A250653 Number of (n+1)X(5+1) 0..1 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing min(x(i,j),x(i-1,j)) in the j direction.
49, 103, 211, 427, 859, 1723, 3451, 6907, 13819, 27643, 55291, 110587, 221179, 442363, 884731, 1769467, 3538939, 7077883, 14155771, 28311547, 56623099, 113246203, 226492411, 452984827, 905969659, 1811939323, 3623878651
Offset: 1
Keywords
Examples
Some solutions for n=4 ..1..1..1..0..0..0....1..1..1..1..1..1....1..1..1..1..1..1....1..1..1..1..0..0 ..0..0..0..0..0..0....1..1..1..1..1..1....1..1..1..1..1..1....0..0..0..0..0..0 ..1..1..1..1..1..1....0..0..0..0..0..0....0..0..0..0..0..0....1..1..1..1..1..1 ..1..1..1..1..1..1....0..0..0..0..0..0....0..0..0..0..0..0....1..1..1..1..1..1 ..0..0..0..0..1..1....1..1..1..1..1..1....0..0..0..0..1..1....0..0..0..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A304387.
Formula
Empirical: a(n) = 3*a(n-1) - 2*a(n-2); also a(n) = 2^(n-1)*25 + (5*2^(n-1)-1)*5 + 2^(n+1).
It appears that a(n) = 27*2^n-5, which would make this coincide with A304387. - N. J. A. Sloane, May 13 2018
Comments