This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A250656 #6 Jul 23 2025 12:39:34 %S A250656 9,16,19,25,34,39,36,53,70,79,49,76,109,142,159,64,103,156,221,286, %T A250656 319,81,134,211,316,445,574,639,100,169,274,427,636,893,1150,1279,121, %U A250656 208,345,554,859,1276,1789,2302,2559,144,251,424,697,1114,1723,2556,3581 %N A250656 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing min(x(i,j),x(i-1,j)) in the j direction. %C A250656 Table starts %C A250656 ....9...16....25....36....49....64....81...100...121...144...169....196....225 %C A250656 ...19...34....53....76...103...134...169...208...251...298...349....404....463 %C A250656 ...39...70...109...156...211...274...345...424...511...606...709....820....939 %C A250656 ...79..142...221...316...427...554...697...856..1031..1222..1429...1652...1891 %C A250656 ..159..286...445...636...859..1114..1401..1720..2071..2454..2869...3316...3795 %C A250656 ..319..574...893..1276..1723..2234..2809..3448..4151..4918..5749...6644...7603 %C A250656 ..639.1150..1789..2556..3451..4474..5625..6904..8311..9846.11509..13300..15219 %C A250656 .1279.2302..3581..5116..6907..8954.11257.13816.16631.19702.23029..26612..30451 %C A250656 .2559.4606..7165.10236.13819.17914.22521.27640.33271.39414.46069..53236..60915 %C A250656 .5119.9214.14333.20476.27643.35834.45049.55288.66551.78838.92149.106484.121843 %H A250656 R. H. Hardin, <a href="/A250656/b250656.txt">Table of n, a(n) for n = 1..880</a> %F A250656 Empirical: T(n,k) = 2^(n-1)*k^2 + (5*2^(n-1)-1)*k + 2^(n+1) %F A250656 Empirical for column k: %F A250656 k=1: a(n) = 3*a(n-1) -2*a(n-2); also a(n) = 2^(n-1) +(5*2^(n-1) -1) +2^(n+1) %F A250656 k=2: a(n) = 3*a(n-1) -2*a(n-2); also a(n) = 2^(n-1)*4 +(5*2^(n-1) -1)*2 +2^(n+1) %F A250656 k=3: a(n) = 3*a(n-1) -2*a(n-2); also a(n) = 2^(n-1)*9 +(5*2^(n-1) -1)*3 +2^(n+1) %F A250656 k=4: a(n) = 3*a(n-1) -2*a(n-2); also a(n) = 2^(n-1)*16 +(5*2^(n-1) -1)*4 +2^(n+1) %F A250656 k=5: a(n) = 3*a(n-1) -2*a(n-2); also a(n) = 2^(n-1)*25 +(5*2^(n-1) -1)*5 +2^(n+1) %F A250656 k=6: a(n) = 3*a(n-1) -2*a(n-2); also a(n) = 2^(n-1)*36 +(5*2^(n-1) -1)*6 +2^(n+1) %F A250656 k=7: a(n) = 3*a(n-1) -2*a(n-2); also a(n) = 2^(n-1)*49 +(5*2^(n-1) -1)*7 +2^(n+1) %F A250656 Empirical for row n: %F A250656 n=1: a(n) = 1*n^2 + 4*n + 4 %F A250656 n=2: a(n) = 2*n^2 + 9*n + 8 %F A250656 n=3: a(n) = 4*n^2 + 19*n + 16 %F A250656 n=4: a(n) = 8*n^2 + 39*n + 32 %F A250656 n=5: a(n) = 16*n^2 + 79*n + 64 %F A250656 n=6: a(n) = 32*n^2 + 159*n + 128 %F A250656 n=7: a(n) = 64*n^2 + 319*n + 256 %e A250656 Some solutions for n=4 k=4 %e A250656 ..1..1..0..1..1....0..0..0..0..0....0..0..0..0..0....1..1..1..0..0 %e A250656 ..0..0..0..1..1....1..1..1..1..1....1..1..1..1..1....0..0..0..0..0 %e A250656 ..0..0..0..1..1....1..1..1..1..1....0..0..0..0..0....0..0..0..0..0 %e A250656 ..0..0..0..1..1....0..0..0..0..0....1..1..1..1..1....1..1..1..1..1 %e A250656 ..0..0..0..1..1....0..1..1..1..1....1..1..1..1..1....0..0..0..1..1 %Y A250656 Column 1 is A052549(n+1) %Y A250656 Column 2 is A176449 %Y A250656 Column 3 is A156127(n+1) %Y A250656 Column 4 is A048487(n+2) %Y A250656 Row 1 is A000290(n+2) %Y A250656 Row 2 is A168244(n+3) %K A250656 nonn,tabl %O A250656 1,1 %A A250656 _R. H. Hardin_, Nov 26 2014