cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250676 T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with nondecreasing x(i,j)+x(i,j-1) in the i direction and nondecreasing absolute value of x(i,j)-x(i-1,j) in the j direction.

This page as a plain text file.
%I A250676 #8 Jul 23 2025 12:40:37
%S A250676 104,669,520,3927,5154,2512,22119,42422,34630,11736,120233,329226,
%T A250676 388916,210158,53032,637948,2406972,4008211,3107446,1185860,233300,
%U A250676 3321772,16949262,38224684,41503790,22408818,6325144,1005121,17052553,115965426
%N A250676 T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with nondecreasing x(i,j)+x(i,j-1) in the i direction and nondecreasing absolute value of x(i,j)-x(i-1,j) in the j direction.
%C A250676 Table starts
%C A250676 ......104.......669........3927.........22119.........120233...........637948
%C A250676 ......520......5154.......42422........329226........2406972.........16949262
%C A250676 .....2512.....34630......388916.......4008211.......38224684........345255872
%C A250676 ....11736....210158.....3107446......41503790......505108522.......5726252240
%C A250676 ....53032...1185860....22408818.....379890972.....5803025694......81461365899
%C A250676 ...233300...6325144...148821788....3135539502....59036115470....1009432228498
%C A250676 ..1005121..32230991...923242475...23739860017...542694735983...11161659240791
%C A250676 ..4260728.158164928..5408914174..167047195040..4574838198834..111900180498102
%C A250676 .17835379.752162284.30183160828.1103768366168.35784917880517.1030597712205895
%H A250676 R. H. Hardin, <a href="/A250676/b250676.txt">Table of n, a(n) for n = 1..105</a>
%F A250676 Empirical for column k:
%F A250676 k=1: [linear recurrence of order 7] for n>11
%F A250676 k=2: [order 20] for n>28
%F A250676 k=3: [order 35] for n>47
%F A250676 k=4: [order 47] for n>63
%F A250676 Empirical for row n:
%F A250676 n=1: [linear recurrence of order 7]
%F A250676 n=2: [order 20]
%F A250676 n=3: [order 58]
%e A250676 Some solutions for n=2 k=4
%e A250676 ..0..1..1..3..1....2..0..0..2..1....2..1..1..2..0....2..2..1..0..0
%e A250676 ..0..1..1..3..1....2..0..0..2..1....2..2..2..1..1....2..3..0..1..2
%e A250676 ..1..3..3..1..3....2..0..0..3..3....2..2..2..3..3....2..3..1..2..3
%Y A250676 Rows 1-7 are A250677 - A250683.
%K A250676 nonn,tabl
%O A250676 1,1
%A A250676 _R. H. Hardin_, Nov 26 2014