cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A250544 T(n,k) = number of (n+1)X(k+1) 0..3 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing x(i,j)-x(i-1,j) in the j direction.

Original entry on oeis.org

150, 1080, 1080, 6627, 10704, 6627, 36552, 79366, 79366, 36552, 187000, 491650, 644779, 491650, 187000, 905440, 2701872, 4169584, 4169584, 2701872, 905440, 4206453, 13657024, 23289547, 27240292, 23289547, 13657024, 4206453, 18933408
Offset: 1

Views

Author

R. H. Hardin, Nov 24 2014

Keywords

Comments

Peter Luschny remarks that the coefficients of the empirical recurrence relation for the column 1 are listed in the 9th row of A246117. - M. F. Hasler, Feb 11 2015

Examples

			Some solutions for n=2 k=4
..2..2..1..0..0....2..0..3..1..1....2..2..2..2..0....0..0..2..0..0
..2..3..2..2..2....0..0..3..2..2....2..2..2..2..0....1..1..3..1..1
..1..3..2..3..3....0..0..3..2..3....1..2..2..2..3....0..0..2..0..2
Table starts:
.......150.......1080........6627........36552........187000........905440
......1080......10704.......79366.......491650.......2701872......13657024
......6627......79366......644779......4169584......23289547.....117777788
.....36552.....491650.....4169584.....27240292.....151170400.....752602024
....187000....2701872....23289547....151170400.....824599694....4013192386
....905440...13657024...117777788....752602024....4013192386...19031828420
...4206453...64993652...555362165...3475227442...18064444143...83356429646
..18933408..295871112..2489782728..15210145612...76961701472..345394150196
..83153850.1302924116.10756619019..64036997144..315204675572.1375930596944
.358250280.5595784456.45218540866.262068107390.1254564769204.5328628464360
		

Crossrefs

Row/column 1 is A223069(n+1) and row/column 2 of A223071.
Row/column 2-7 are A250538 - A250543; diagonal is A250537.

Formula

Empirical for column k (k=2-7 recurrence also works for k=1):
k=1: a(n) = 16*a(n-1) -106*a(n-2) +376*a(n-3) -769*a(n-4) +904*a(n-5) -564*a(n-6) +144*a(n-7)
k=2: [order 16, see A250538]
k=3: [same order 16]
k=4: [same order 16]
k=5: [same order 16]
k=6: [same order 16]
k=7: [same order 16]

Extensions

Edited by M. F. Hasler, Feb 11 2015

A250669 Number of (n+1)X(1+1) 0..3 arrays with nondecreasing x(i,j)+x(i,j-1) in the i direction and nondecreasing absolute value of x(i,j)-x(i-1,j) in the j direction.

Original entry on oeis.org

104, 520, 2512, 11736, 53032, 233300, 1005121, 4260728, 17835379, 73930174, 304111433, 1243471948, 5060483311, 20518170938, 82950532885, 334582615528, 1347111707003, 5416107760342, 21751360774177, 87278063198468
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2014

Keywords

Comments

Column 1 of A250676

Examples

			Some solutions for n=4
..2..1....2..0....0..2....2..0....0..0....0..0....1..1....1..0....2..1....0..1
..0..3....1..2....1..1....1..1....0..2....0..1....0..2....0..1....0..3....0..3
..2..1....1..2....1..1....0..2....1..1....1..3....1..3....0..1....0..3....0..3
..3..0....2..1....2..2....0..2....2..2....2..2....2..2....0..3....3..0....2..1
..0..3....2..2....1..3....1..1....3..1....2..3....2..2....2..1....0..3....1..3
		

Formula

Empirical: a(n) = 16*a(n-1) -106*a(n-2) +376*a(n-3) -769*a(n-4) +904*a(n-5) -564*a(n-6) +144*a(n-7) for n>11

A250675 Number of (n+1)X(7+1) 0..3 arrays with nondecreasing x(i,j)+x(i,j-1) in the i direction and nondecreasing absolute value of x(i,j)-x(i-1,j) in the j direction.

Original entry on oeis.org

3321772, 115965426, 2996016017, 61498698426, 1070591197687, 15971487229178, 210335029800118, 2486539928867930, 26773801460595558, 265593229627937954, 2450139707701747024, 21184357574916340526, 172798870644903483178
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2014

Keywords

Comments

Column 7 of A250676

Examples

			Some solutions for n=1
..0..0..1..1..2..3..2..0....0..0..1..0..2..1..1..1....0..0..2..1..1..0..0..0
..0..0..1..1..2..3..2..1....0..0..1..0..2..1..1..2....0..0..3..0..2..1..1..3
		

A250677 Number of (1+1) X (n+1) 0..3 arrays with nondecreasing x(i,j)+x(i,j-1) in the i direction and nondecreasing absolute value of x(i,j)-x(i-1,j) in the j direction.

Original entry on oeis.org

104, 669, 3927, 22119, 120233, 637948, 3321772, 17052553, 86573591, 435717423, 2177845221, 10825761528, 53576004128, 264200974309, 1299108852679, 6372932446759, 31203614429489, 152543921033076, 744788303718996
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2014

Keywords

Comments

Row 1 of A250676.

Examples

			Some solutions for n=4:
  2 1 3 1 1    1 2 1 0 1    1 2 2 0 0    1 1 1 1 3
  3 2 2 3 3    1 3 2 1 2    2 3 1 1 1    1 2 3 3 1
		

Crossrefs

Cf. A250676.

Formula

Empirical: a(n) = 10*a(n-1) - 21*a(n-2) - 54*a(n-3) + 155*a(n-4) + 118*a(n-5) - 228*a(n-6) - 144*a(n-7).
Empirical g.f.: x*(104 - 371*x - 579*x^2 + 2514*x^3 + 1516*x^4 - 3792*x^5 - 2304*x^6) / ((1 - 4*x)*(1 - x - x^2)*(1 - 2*x - 4*x^2)*(1 - 3*x - 9*x^2)). - Colin Barker, Mar 19 2018

A250683 Number of (7+1)X(n+1) 0..3 arrays with nondecreasing x(i,j)+x(i,j-1) in the i direction and nondecreasing absolute value of x(i,j)-x(i-1,j) in the j direction.

Original entry on oeis.org

1005121, 32230991, 923242475, 23739860017, 542694735983, 11161659240791, 210335029800118, 3682042848693451, 60641209583699449, 948745856029597670, 14215547255379464689, 205309451238359552540, 2873492420605039758875
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2014

Keywords

Comments

Row 7 of A250676

Examples

			Some solutions for n=1
..0..2....0..1....0..0....0..0....0..1....0..0....0..0....0..1....0..1....0..0
..0..2....0..3....0..0....0..2....0..3....0..3....0..2....0..2....0..1....0..2
..2..0....2..1....0..2....2..0....2..1....0..3....0..3....2..0....0..3....2..0
..2..1....3..0....0..3....2..2....0..3....3..0....1..2....0..2....2..1....0..2
..0..3....1..2....3..0....3..1....1..2....3..1....1..2....2..0....2..2....2..0
..2..1....0..3....1..3....1..3....3..0....1..3....2..1....2..0....3..1....0..3
..3..0....1..2....3..1....3..1....2..1....2..2....1..2....3..1....2..3....2..1
..2..3....2..3....3..1....2..2....3..0....1..3....2..3....3..1....3..2....3..0
		

A250670 Number of (n+1)X(2+1) 0..3 arrays with nondecreasing x(i,j)+x(i,j-1) in the i direction and nondecreasing absolute value of x(i,j)-x(i-1,j) in the j direction.

Original entry on oeis.org

669, 5154, 34630, 210158, 1185860, 6325144, 32230991, 158164928, 752162284, 3484008326, 15783790118, 70176461116, 307081524576, 1325658002144, 5657123014959, 23904700805062, 100166248075189, 416720321036830
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2014

Keywords

Comments

Column 2 of A250676

Examples

			Some solutions for n=3
..1..0..2....2..1..1....0..0..2....2..0..1....3..0..1....3..1..1....1..0..2
..1..0..3....2..1..1....0..1..1....1..1..2....3..0..2....3..1..1....0..1..1
..2..2..1....2..1..3....0..1..2....1..1..2....3..2..0....3..2..0....0..2..2
..3..1..3....2..1..3....1..3..0....1..1..3....2..3..1....3..2..3....1..1..3
		

Formula

Empirical: a(n) = 38*a(n-1) -678*a(n-2) +7552*a(n-3) -58895*a(n-4) +341814*a(n-5) -1531840*a(n-6) +5427992*a(n-7) -15445215*a(n-8) +35639986*a(n-9) -67056686*a(n-10) +103057344*a(n-11) -129153505*a(n-12) +131275346*a(n-13) -107173068*a(n-14) +69203560*a(n-15) -34519952*a(n-16) +12821856*a(n-17) -3336768*a(n-18) +542592*a(n-19) -41472*a(n-20) for n>28

A250671 Number of (n+1)X(3+1) 0..3 arrays with nondecreasing x(i,j)+x(i,j-1) in the i direction and nondecreasing absolute value of x(i,j)-x(i-1,j) in the j direction.

Original entry on oeis.org

3927, 42422, 388916, 3107446, 22408818, 148821788, 923242475, 5408914174, 30183160828, 161540947652, 833948226614, 4172559026594, 20315088999198, 96576921782616, 449613162886204, 2055003400985552, 9241542539124820
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2014

Keywords

Comments

Column 3 of A250676

Examples

			Some solutions for n=2
..2..1..0..2....0..0..1..1....2..1..0..0....1..2..0..2....1..1..0..3
..2..1..1..1....0..0..1..2....2..1..2..3....0..3..2..0....1..1..0..3
..2..2..2..2....1..2..3..0....3..0..3..2....1..2..3..1....2..0..1..2
		

Formula

Empirical: a(n) = 65*a(n-1) -2040*a(n-2) +41182*a(n-3) -601025*a(n-4) +6757461*a(n-5) -60904682*a(n-6) +452104888*a(n-7) -2818259682*a(n-8) +14967704738*a(n-9) -68478620392*a(n-10) +272205579828*a(n-11) -946422923082*a(n-12) +2893259719938*a(n-13) -7808288819292*a(n-14) +18659986712520*a(n-15) -39573170147037*a(n-16) +74582440486893*a(n-17) -125002834972016*a(n-18) +186317017612318*a(n-19) -246795421123605*a(n-20) +290111846304617*a(n-21) -301991734906378*a(n-22) +277530162730704*a(n-23) -224266440175648*a(n-24) +158524442376560*a(n-25) -97366518380640*a(n-26) +51522457118080*a(n-27) -23231309452544*a(n-28) +8797779121920*a(n-29) -2744576054784*a(n-30) +686513332224*a(n-31) -132324212736*a(n-32) +18444423168*a(n-33) -1654235136*a(n-34) +71663616*a(n-35) for n>47

A250672 Number of (n+1)X(4+1) 0..3 arrays with nondecreasing x(i,j)+x(i,j-1) in the i direction and nondecreasing absolute value of x(i,j)-x(i-1,j) in the j direction.

Original entry on oeis.org

22119, 329226, 4008211, 41503790, 379890972, 3135539502, 23739860017, 167047195040, 1103768366168, 6905919873166, 41196085958108, 235655369716800, 1298966090014725, 6928230529332792, 35884432642746405, 181050004787559210
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2014

Keywords

Comments

Column 4 of A250676

Examples

			Some solutions for n=1
..3..3..0..3..0....2..2..2..2..0....1..1..2..2..1....0..1..0..0..3
..3..3..1..2..1....2..3..3..1..3....1..1..3..1..2....2..3..3..3..0
		

Formula

Empirical recurrence of order 47 (see link above)

A250673 Number of (n+1)X(5+1) 0..3 arrays with nondecreasing x(i,j)+x(i,j-1) in the i direction and nondecreasing absolute value of x(i,j)-x(i-1,j) in the j direction.

Original entry on oeis.org

120233, 2406972, 38224684, 505108522, 5803025694, 59036115470, 542694735983, 4574838198834, 35784917880517, 262221403119626, 1814189139876511, 11928469877179634, 74951135729008916, 452187475323346430
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2014

Keywords

Comments

Column 5 of A250676

Examples

			Some solutions for n=1
..1..3..1..0..1..1....1..2..2..2..1..0....0..2..0..3..0..3....2..3..0..1..2..0
..2..2..2..1..3..3....1..2..2..2..1..0....0..3..1..2..1..2....2..3..0..3..0..2
		

Formula

Empirical recurrence of order 59 (see link above)

A250674 Number of (n+1)X(6+1) 0..3 arrays with nondecreasing x(i,j)+x(i,j-1) in the i direction and nondecreasing absolute value of x(i,j)-x(i-1,j) in the j direction.

Original entry on oeis.org

637948, 16949262, 345255872, 5726252240, 81461365899, 1009432228498, 11161659240791, 111900180498102, 1030597712205895, 8812068752088130, 70559356373093922, 532907016216005428, 3819559062732066364
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2014

Keywords

Comments

Column 6 of A250676

Examples

			Some solutions for n=1
..0..2..2..2..2..0..1....0..3..0..0..3..0..3....0..1..0..1..2..1..2
..0..2..2..3..3..1..3....0..3..2..3..0..3..0....0..1..1..0..3..3..0
		
Showing 1-10 of 16 results. Next