cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A250722 Number of (n+1) X (n+1) 0..1 arrays with nondecreasing x(i,j)+x(i,j-1) in the i direction and nondecreasing min(x(i,j),x(i-1,j)) in the j direction.

Original entry on oeis.org

9, 46, 208, 885, 3605, 14437, 57397, 228455, 912438, 3661515, 14755226, 59674645, 241996099, 983339540, 4001469252, 16299591564, 66441841973, 270971703338, 1105502740041, 4511347592849, 18413367334909, 75165710188419
Offset: 1

Views

Author

R. H. Hardin, Nov 27 2014

Keywords

Comments

Diagonal of A250729.

Examples

			Some solutions for n=4
..0..0..0..0..0....0..0..0..0..0....0..1..0..0..1....0..0..0..0..0
..0..0..0..0..0....0..0..0..0..0....1..0..1..1..1....0..0..0..0..0
..0..0..0..1..0....0..0..0..0..0....0..1..1..1..1....0..0..0..0..1
..0..0..1..0..1....0..0..0..0..0....0..1..1..1..1....0..0..0..0..1
..1..1..0..1..1....1..0..1..0..0....0..1..1..1..1....1..0..0..1..1
		

Crossrefs

Cf. A250729.

A250723 Number of (n+1) X (2+1) 0..1 arrays with nondecreasing x(i,j)+x(i,j-1) in the i direction and nondecreasing min(x(i,j),x(i-1,j)) in the j direction.

Original entry on oeis.org

22, 46, 85, 144, 230, 350, 513, 728, 1006, 1358, 1797, 2336, 2990, 3774, 4705, 5800, 7078, 8558, 10261, 12208, 14422, 16926, 19745, 22904, 26430, 30350, 34693, 39488, 44766, 50558, 56897, 63816, 71350, 79534, 88405, 98000, 108358, 119518, 131521
Offset: 1

Views

Author

R. H. Hardin, Nov 27 2014

Keywords

Examples

			Some solutions for n=4:
..0..0..0....0..1..1....0..0..1....0..0..0....1..0..1....0..0..0....0..0..0
..0..0..1....1..1..1....0..1..1....0..0..0....0..1..1....0..0..0....0..0..0
..1..0..1....1..1..1....0..1..1....0..0..0....1..1..1....0..0..0....0..0..0
..0..1..1....1..1..1....0..1..1....0..0..0....1..1..1....0..0..0....0..0..1
..0..1..1....1..1..1....1..1..1....0..1..1....1..1..1....1..0..0....0..1..1
		

Crossrefs

Column 2 of A250729.

Formula

Empirical: a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6).
Empirical for n mod 2 = 0: a(n) = (1/24)*n^4 + (1/2)*n^3 + (10/3)*n^2 + 10*n + 8.
Empirical for n mod 2 = 1: a(n) = (1/24)*n^4 + (1/2)*n^3 + (10/3)*n^2 + 10*n + (65/8).
Empirical g.f.: x*(22 - 42*x + 11*x^2 + 34*x^3 - 31*x^4 + 8*x^5) / ((1 - x)^5*(1 + x)). - Colin Barker, Nov 16 2018

A250724 Number of (n+1) X (3+1) 0..1 arrays with nondecreasing x(i,j)+x(i,j-1) in the i direction and nondecreasing min(x(i,j),x(i-1,j)) in the j direction.

Original entry on oeis.org

50, 110, 208, 365, 600, 942, 1418, 2065, 2918, 4022, 5420, 7165, 9308, 11910, 15030, 18737, 23098, 28190, 34088, 40877, 48640, 57470, 67458, 78705, 91310, 105382, 121028, 138365, 157508, 178582, 201710, 227025, 254658, 284750, 317440, 352877
Offset: 1

Views

Author

R. H. Hardin, Nov 27 2014

Keywords

Examples

			Some solutions for n=4:
..0..0..0..1....0..0..0..1....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..0..1....0..0..1..1....0..0..0..0....0..1..1..1....0..0..0..1
..0..1..1..1....0..0..1..1....0..0..0..1....0..1..1..1....0..1..1..1
..1..1..1..1....0..0..1..1....0..0..0..1....0..1..1..1....1..1..1..1
..1..1..1..1....1..0..1..1....0..0..0..1....1..1..1..1....1..1..1..1
		

Crossrefs

Column 3 of A250729.

Formula

Empirical: a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6).
Empirical for n mod 2 = 0: a(n) = (1/6)*n^4 + (4/3)*n^3 + (91/12)*n^2 + (74/3)*n + 17.
Empirical for n mod 2 = 1: a(n) = (1/6)*n^4 + (4/3)*n^3 + (91/12)*n^2 + (74/3)*n + (65/4).
Empirical g.f.: x*(50 - 90*x + 18*x^2 + 83*x^3 - 70*x^4 + 17*x^5) / ((1 - x)^5*(1 + x)). - Colin Barker, Nov 16 2018

A250725 Number of (n+1) X (4+1) 0..1 arrays with nondecreasing x(i,j)+x(i,j-1) in the i direction and nondecreasing min(x(i,j),x(i-1,j)) in the j direction.

Original entry on oeis.org

114, 257, 496, 885, 1500, 2434, 3807, 5760, 8465, 12119, 16954, 23231, 31250, 41344, 53889, 69298, 88031, 110589, 137524, 169433, 206968, 250830, 301779, 360628, 428253, 505587, 593630, 693443, 806158, 932972, 1075157, 1234054, 1411083
Offset: 1

Views

Author

R. H. Hardin, Nov 27 2014

Keywords

Examples

			Some solutions for n=4:
..0..0..0..1..1....0..0..0..0..0....0..0..0..1..1....0..0..0..0..0
..0..0..0..1..1....0..1..0..0..1....0..0..0..1..1....1..0..0..0..0
..0..0..0..1..1....1..0..1..1..1....0..0..0..1..1....0..1..0..0..0
..1..1..1..1..1....0..1..1..1..1....0..0..0..1..1....1..0..1..0..0
..1..1..1..1..1....1..1..1..1..1....0..1..1..1..1....0..1..0..1..1
		

Crossrefs

Column 4 of A250729.

Formula

Empirical: a(n) = 5*a(n-1) - 9*a(n-2) + 5*a(n-3) + 5*a(n-4) - 9*a(n-5) + 5*a(n-6) - a(n-7) for n>8.
Empirical for n mod 2 = 0: a(n) = (1/60)*n^5 + (13/24)*n^4 + (8/3)*n^3 + (407/24)*n^2 + (3859/60)*n + 30 for n>1.
Empirical for n mod 2 = 1: a(n) = (1/60)*n^5 + (13/24)*n^4 + (8/3)*n^3 + (407/24)*n^2 + (3859/60)*n + (61/2) for n>1.
Empirical g.f.: x*(114 - 313*x + 237*x^2 + 148*x^3 - 316*x^4 + 160*x^5 - 25*x^6 - x^7) / ((1 - x)^6*(1 + x)). - Colin Barker, Nov 16 2018

A250726 Number of (n+1) X (5+1) 0..1 arrays with nondecreasing x(i,j)+x(i,j-1) in the i direction and nondecreasing min(x(i,j),x(i-1,j)) in the j direction.

Original entry on oeis.org

257, 596, 1158, 2092, 3605, 6016, 9728, 15297, 23407, 34943, 50970, 72810, 102025, 140498, 190420, 254375, 335331, 436729, 562478, 717048, 905469, 1133428, 1407272, 1734109, 2121815, 2579139, 3115714, 3742166, 4470129, 5312358, 6282748, 7396451
Offset: 1

Views

Author

R. H. Hardin, Nov 27 2014

Keywords

Examples

			Some solutions for n=4:
..0..0..0..0..0..0....0..0..0..1..1..1....0..0..0..0..0..0....0..0..0..0..0..1
..0..0..0..0..0..0....0..0..1..1..1..1....0..0..0..0..0..0....0..0..0..0..0..1
..0..0..0..0..0..0....0..1..1..1..1..1....0..0..0..0..0..0....0..0..0..0..1..1
..0..0..0..0..0..1....0..1..1..1..1..1....0..0..0..0..0..0....0..1..0..0..1..1
..0..0..0..0..0..1....1..1..1..1..1..1....1..1..1..0..1..0....1..0..1..0..1..1
		

Crossrefs

Column 5 of A250729.

Formula

Empirical: a(n) = 6*a(n-1) - 14*a(n-2) + 14*a(n-3) - 14*a(n-5) + 14*a(n-6) - 6*a(n-7) + a(n-8) for n>10.
Empirical for n mod 2 = 0: a(n) = (1/360)*n^6 + (1/12)*n^5 + (49/36)*n^4 + (13/3)*n^3 + (15169/360)*n^2 + (1957/12)*n + 43 for n>2.
Empirical for n mod 2 = 1: a(n) = (1/360)*n^6 + (1/12)*n^5 + (49/36)*n^4 + (13/3)*n^3 + (15169/360)*n^2 + (1957/12)*n + 40 for n>2.
Empirical g.f.: x*(257 - 946*x + 1180*x^2 - 110*x^3 - 1079*x^4 + 1060*x^5 - 440*x^6 + 93*x^7 - 12*x^8 + x^9) / ((1 - x)^7*(1 + x)). - Colin Barker, Nov 16 2018

A250727 Number of (n+1) X (6+1) 0..1 arrays with nondecreasing x(i,j)+x(i,j-1) in the i direction and nondecreasing min(x(i,j),x(i-1,j)) in the j direction.

Original entry on oeis.org

579, 1376, 2699, 4889, 8514, 14437, 23941, 38821, 61554, 95438, 144820, 215289, 313964, 449751, 633699, 879329, 1203066, 1624648, 2167642, 2859941, 3734372, 4829289, 6189281, 7865869, 9918322, 12414466, 15431616, 19057505, 23391340
Offset: 1

Views

Author

R. H. Hardin, Nov 27 2014

Keywords

Examples

			Some solutions for n=4:
..0..0..0..0..0..0..0....0..0..0..0..0..0..0....0..0..0..0..0..0..0
..1..0..1..0..1..0..1....0..0..0..0..0..0..0....0..0..0..0..0..0..1
..0..1..0..1..0..1..0....0..0..0..0..0..0..0....0..0..0..0..0..1..0
..1..0..1..0..1..0..1....1..0..0..1..1..1..1....0..0..0..0..1..0..1
..0..1..0..1..0..1..1....0..1..1..1..1..1..1....1..0..0..1..0..1..0
		

Crossrefs

Column 6 of A250729.

Formula

Empirical: a(n) = 7*a(n-1) - 20*a(n-2) + 28*a(n-3) - 14*a(n-4) - 14*a(n-5) + 28*a(n-6) - 20*a(n-7) + 7*a(n-8) - a(n-9) for n>14.
Empirical for n mod 2 = 0: a(n) = (1/2520)*n^7 + (11/720)*n^6 + (179/720)*n^5 + (427/144)*n^4 + (4559/720)*n^3 + (41227/360)*n^2 + (81253/210)*n + 25 for n>5.
Empirical for n mod 2 = 1: a(n) = (1/2520)*n^7 + (11/720)*n^6 + (179/720)*n^5 + (427/144)*n^4 + (4559/720)*n^3 + (41227/360)*n^2 + (81253/210)*n + 27 for n>5.
Empirical g.f.: x*(579 - 2677*x + 4647*x^2 - 2696*x^3 - 2151*x^4 + 4417*x^5 - 2892*x^6 + 866*x^7 - 72*x^8 - 19*x^9 + 9*x^10 - 15*x^11 + 10*x^12 - 2*x^13) / ((1 - x)^8*(1 + x)). - Colin Barker, Nov 16 2018

A250728 Number of (n+1)X(7+1) 0..1 arrays with nondecreasing x(i,j)+x(i,j-1) in the i direction and nondecreasing min(x(i,j),x(i-1,j)) in the j direction.

Original entry on oeis.org

1302, 3173, 6257, 11377, 19887, 34069, 57397, 95231, 155263, 248537, 390263, 601256, 909242, 1350837, 1973466, 2838027, 4021571, 5620807, 7755707, 10574024, 14256002, 19020095, 25128978, 32896671, 42696063, 54967661, 70228855, 89084528
Offset: 1

Views

Author

R. H. Hardin, Nov 27 2014

Keywords

Comments

Column 7 of A250729

Examples

			Some solutions for n=4
..0..0..0..0..0..0..0..0....0..0..0..0..0..0..0..1....0..0..0..0..0..0..0..1
..0..0..0..0..0..0..0..1....0..0..0..0..0..0..0..1....0..0..0..0..0..0..1..1
..0..0..0..0..0..1..1..1....0..0..0..0..0..0..0..1....0..0..0..0..0..1..1..1
..0..0..0..0..0..1..1..1....0..0..0..0..1..0..0..1....0..0..0..0..0..1..1..1
..0..0..0..0..1..1..1..1....1..1..0..1..0..1..0..1....1..0..1..1..0..1..1..1
		

Formula

Empirical: a(n) = 8*a(n-1) -27*a(n-2) +48*a(n-3) -42*a(n-4) +42*a(n-6) -48*a(n-7) +27*a(n-8) -8*a(n-9) +a(n-10) for n>17
Empirical for n mod 2 = 0: a(n) = (1/20160)*n^8 + (1/420)*n^7 + (71/1440)*n^6 + (71/120)*n^5 + (17767/2880)*n^4 + (1159/120)*n^3 + (533033/1680)*n^2 + (86336/105)*n - 5 for n>7
Empirical for n mod 2 = 1: a(n) = (1/20160)*n^8 + (1/420)*n^7 + (71/1440)*n^6 + (71/120)*n^5 + (17767/2880)*n^4 + (1159/120)*n^3 + (533033/1680)*n^2 + (86336/105)*n - 17 for n>7

A250730 Number of (1+1)X(n+1) 0..1 arrays with nondecreasing x(i,j)+x(i,j-1) in the i direction and nondecreasing min(x(i,j),x(i-1,j)) in the j direction.

Original entry on oeis.org

9, 22, 50, 114, 257, 579, 1302, 2927, 6578, 14782, 33216, 74637, 167709, 376840, 846753, 1902638, 4275190, 9606266, 21585085, 48501247, 108981314, 244878791, 550237650, 1236372778, 2778104416, 6242343961, 14026419561, 31517078668
Offset: 1

Views

Author

R. H. Hardin, Nov 27 2014

Keywords

Comments

Row 1 of A250729

Examples

			Some solutions for n=4
..0..0..0..1..1....1..0..1..0..1....0..1..0..0..0....1..0..1..0..0
..1..1..0..1..1....0..1..0..1..0....1..0..1..0..1....0..1..0..1..0
		

Formula

Empirical: a(n) = 3*a(n-1) -a(n-2) -2*a(n-3) +a(n-4).
Empirical: G.f. x*( -9+5*x+7*x^2-4*x^3 ) / ( (x-1)*(x^3-x^2-2*x+1) ). - R. J. Mathar, Nov 27 2014

A250731 Number of (2+1) X (n+1) 0..1 arrays with nondecreasing x(i,j)+x(i,j-1) in the i direction and nondecreasing min(x(i,j),x(i-1,j)) in the j direction.

Original entry on oeis.org

18, 46, 110, 257, 596, 1376, 3173, 7310, 16838, 38777, 89300, 205640, 473549, 1090478, 2511134, 5782577, 13315988, 30663728, 70611701, 162602894, 374438006, 862246697, 1985560724, 4572300824, 10528983005, 24245885486, 55832834510
Offset: 1

Views

Author

R. H. Hardin, Nov 27 2014

Keywords

Examples

			Some solutions for n=4:
..0..0..0..0..1....0..0..0..0..1....0..0..0..0..0....1..0..0..0..0
..0..1..0..0..1....0..1..0..0..1....0..0..0..0..0....0..1..0..0..1
..1..0..1..0..1....1..0..1..1..1....1..0..0..1..0....1..0..1..0..1
		

Crossrefs

Row 2 of A250729.

Formula

Empirical: a(n) = 2*a(n-1) + 2*a(n-2) - 3*a(n-3) for n>4.
Empirical g.f.: x*(18 + 10*x - 18*x^2 - x^3) / ((1 - x)*(1 - x - 3*x^2)). - Colin Barker, Nov 16 2018

A250732 Number of (3+1) X (n+1) 0..1 arrays with nondecreasing x(i,j)+x(i,j-1) in the i direction and nondecreasing min(x(i,j),x(i-1,j)) in the j direction.

Original entry on oeis.org

33, 85, 208, 496, 1158, 2699, 6257, 14520, 33640, 77999, 180744, 419005, 971109, 2251135, 5217807, 12095192, 28036004, 64988500, 150642356, 349192782, 809429294, 1876272631, 4349215350, 10081551668, 23369149689, 54170034264
Offset: 1

Views

Author

R. H. Hardin, Nov 27 2014

Keywords

Examples

			Some solutions for n=4:
..0..0..0..0..0....0..0..0..0..1....0..1..0..0..1....0..0..0..0..1
..0..0..0..0..1....0..0..0..1..1....1..0..1..1..1....0..0..1..1..1
..1..0..0..0..1....0..0..0..1..1....0..1..1..1..1....0..1..1..1..1
..0..1..0..1..1....1..1..0..1..1....1..1..1..1..1....1..1..1..1..1
		

Crossrefs

Row 3 of A250729.

Formula

Empirical: a(n) = 4*a(n-1) - 2*a(n-2) - 9*a(n-3) + 12*a(n-4) - 2*a(n-5) - 3*a(n-6) + a(n-7) for n>8.
Empirical g.f.: x*(33 - 47*x - 66*x^2 + 131*x^3 - 41*x^4 - 23*x^5 + 14*x^6 - 2*x^7) / ((1 - x)^2*(1 - 2*x - 3*x^2 + 5*x^3 + x^4 - x^5)). - Colin Barker, Nov 16 2018
Showing 1-10 of 14 results. Next