cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250742 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nonincreasing x(i,j)-x(i-1,j) in the j direction.

Original entry on oeis.org

6, 10, 10, 18, 14, 18, 34, 22, 22, 34, 66, 38, 30, 38, 66, 130, 70, 46, 46, 70, 130, 258, 134, 78, 62, 78, 134, 258, 514, 262, 142, 94, 94, 142, 262, 514, 1026, 518, 270, 158, 126, 158, 270, 518, 1026, 2050, 1030, 526, 286, 190, 190, 286, 526, 1030, 2050, 4098, 2054, 1038
Offset: 1

Views

Author

R. H. Hardin, Nov 27 2014

Keywords

Comments

Table starts
....6...10...18...34...66..130..258..514.1026.2050.4098..8194.16386.32770.65538
...10...14...22...38...70..134..262..518.1030.2054.4102..8198.16390.32774.65542
...18...22...30...46...78..142..270..526.1038.2062.4110..8206.16398.32782.65550
...34...38...46...62...94..158..286..542.1054.2078.4126..8222.16414.32798.65566
...66...70...78...94..126..190..318..574.1086.2110.4158..8254.16446.32830.65598
..130..134..142..158..190..254..382..638.1150.2174.4222..8318.16510.32894.65662
..258..262..270..286..318..382..510..766.1278.2302.4350..8446.16638.33022.65790
..514..518..526..542..574..638..766.1022.1534.2558.4606..8702.16894.33278.66046
.1026.1030.1038.1054.1086.1150.1278.1534.2046.3070.5118..9214.17406.33790.66558
.2050.2054.2062.2078.2110.2174.2302.2558.3070.4094.6142.10238.18430.34814.67582

Examples

			Some solutions for n=4 k=4
..0..0..0..0..0....1..0..1..0..1....0..1..0..0..1....1..1..1..1..1
..0..0..0..0..0....1..0..1..0..1....0..1..0..0..1....1..1..1..1..1
..0..0..0..0..0....1..0..1..0..1....0..1..0..0..1....0..0..0..0..0
..1..1..1..1..1....1..0..1..0..1....0..1..0..0..1....0..0..0..0..0
..1..1..1..1..1....1..0..1..0..1....0..1..0..0..1....1..1..1..1..1
		

Crossrefs

Column 1 is A052548(n+1)
Column 2 is A153972(n+1)
Diagonal is A000918(n+2)

Formula

The constraints apparently result in horizontally or vertically banded arrays, hence:
Empirical: T(n,k) = 2^(k+1)+2^(n+1)-2
Empirical for column k:
k=1: a(n) = 3*a(n-1) -2*a(n-2); a(n) = 2^(n+1) +2
k=2: a(n) = 3*a(n-1) -2*a(n-2); a(n) = 2^(n+1) +6
k=3: a(n) = 3*a(n-1) -2*a(n-2); a(n) = 2^(n+1) +14
k=4: a(n) = 3*a(n-1) -2*a(n-2); a(n) = 2^(n+1) +30
k=5: a(n) = 3*a(n-1) -2*a(n-2); a(n) = 2^(n+1) +62
k=6: a(n) = 3*a(n-1) -2*a(n-2); a(n) = 2^(n+1) +126
k=7: a(n) = 3*a(n-1) -2*a(n-2); a(n) = 2^(n+1) +254