A250746 Start with a(0) = 0; then a(n) = smallest number > a(n-1) such that a(n) divides concat(a(n), a(n-1), ..., a(0)).
0, 1, 2, 3, 5, 10, 15, 18, 19, 35, 42, 51, 55, 70, 85, 93, 95, 106, 155, 217, 310, 745, 1210, 1342, 3355, 5185, 6222, 6330, 9495, 10413, 11115, 12070, 13774, 34435, 41322, 61983, 68870, 1601065116264571, 2217993924228622, 2324778503347862, 2325380783693255
Offset: 0
Examples
a(0) = 0; a(1) = 1 -> 10 / 1 = 10; a(2) = 2 -> 210 / 2 = 105; a(3) = 3 -> 3210 / 3 = 1070; Now we cannot use 4 as the next term because 43210 / 4 = 21605 / 2. a(4) = 5 -> 32105 / 5 = 6421; etc.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 0..46
Programs
-
Maple
with(numtheory); P:=proc(q) local a,k,n; print(0); print(1); a:=10; for n from 2 to q do if type((n*10^(1+ilog10(a))+a)/n,integer) then a:=n*10^(1+ilog10(a))+a; print(n); fi; od; end: P(10^9);
-
Mathematica
f[lst_List] := Block[{k = lst[[-1]] + 1, id = FromDigits@ Flatten@ IntegerDigits@ Reverse@ lst}, While[ Mod[ id, k] > 0, k++]; Append[lst, k]]; Nest[f, {0}, 36] (* or *) f[lst_List] := Block[{mn = lst[[-1]], id = FromDigits@ Flatten@ IntegerDigits@ Reverse@ lst}, d = Divisors@ id; Append[lst, Min@ Select[d, # > mn &]]]; Nest[f, {0, 1}, 36] (* Robert G. Wilson v, Dec 08 2014 *)
Extensions
a(37)-a(40) from Robert G. Wilson v, Dec 08 2014
Comments