cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250746 Start with a(0) = 0; then a(n) = smallest number > a(n-1) such that a(n) divides concat(a(n), a(n-1), ..., a(0)).

Original entry on oeis.org

0, 1, 2, 3, 5, 10, 15, 18, 19, 35, 42, 51, 55, 70, 85, 93, 95, 106, 155, 217, 310, 745, 1210, 1342, 3355, 5185, 6222, 6330, 9495, 10413, 11115, 12070, 13774, 34435, 41322, 61983, 68870, 1601065116264571, 2217993924228622, 2324778503347862, 2325380783693255
Offset: 0

Views

Author

Paolo P. Lava, Nov 27 2014

Keywords

Comments

This sequence is infinite. - Robert G. Wilson v, Dec 09 2014

Examples

			a(0) = 0;
a(1) = 1 -> 10 / 1 = 10;
a(2) = 2 -> 210 / 2 = 105;
a(3) = 3 -> 3210 / 3 = 1070;
Now we cannot use 4 as the next term because 43210 / 4 = 21605 / 2.
a(4) = 5 -> 32105 / 5 = 6421; etc.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a,k,n; print(0); print(1); a:=10;
    for n from 2 to q do if type((n*10^(1+ilog10(a))+a)/n,integer)
    then a:=n*10^(1+ilog10(a))+a; print(n);
    fi; od; end: P(10^9);
  • Mathematica
    f[lst_List] := Block[{k = lst[[-1]] + 1, id = FromDigits@ Flatten@ IntegerDigits@ Reverse@ lst}, While[ Mod[ id, k] > 0, k++]; Append[lst, k]]; Nest[f, {0}, 36] (* or *)
    f[lst_List] := Block[{mn = lst[[-1]], id = FromDigits@ Flatten@ IntegerDigits@ Reverse@ lst}, d = Divisors@ id; Append[lst, Min@ Select[d, # > mn &]]]; Nest[f, {0, 1}, 36] (* Robert G. Wilson v, Dec 08 2014 *)

Extensions

a(37)-a(40) from Robert G. Wilson v, Dec 08 2014