A250769 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing absolute value of x(i,j)-x(i-1,j) in the j direction.
9, 18, 18, 35, 34, 36, 68, 62, 66, 72, 133, 114, 114, 130, 144, 262, 214, 196, 216, 258, 288, 519, 410, 344, 350, 418, 514, 576, 1032, 798, 622, 572, 648, 820, 1026, 1152, 2057, 1570, 1158, 962, 996, 1234, 1622, 2050, 2304, 4106, 3110, 2208, 1680, 1558, 1812
Offset: 1
Examples
Some solutions for n=4 k=4 ..1..1..1..1..0....1..0..0..0..0....1..0..1..1..0....1..1..0..1..1 ..1..1..1..1..0....1..1..1..1..1....1..0..1..1..0....1..1..0..1..1 ..1..1..1..1..0....0..0..0..0..0....1..0..1..1..1....1..1..0..1..1 ..1..1..1..1..0....0..0..0..0..1....1..0..1..1..1....1..1..0..1..1 ..0..0..0..0..1....0..0..0..0..1....1..0..1..1..1....1..1..0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..611
Formula
Empirical for column k: (k+2)^2*2^(n-1) plus a linear polynomial in n
k=1: a(n) = 2*a(n-1); a(n) = 9*2^(n-1)
k=2: a(n) = 3*a(n-1) -2*a(n-2); a(n) = 16*2^(n-1) + 2
k=3: a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3); a(n) = 25*2^(n-1) + 2*n + 8
k=4: a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3); a(n) = 36*2^(n-1) + 10*n + 22
k=5: a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3); a(n) = 49*2^(n-1) + 32*n + 52
k=6: a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3); a(n) = 64*2^(n-1) + 84*n + 114
k=7: a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3); a(n) = 81*2^(n-1) + 198*n + 240
k=8: a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3); a(n) = 100*2^(n-1) + 438*n + 494
k=9: a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3); a(n) = 121*2^(n-1) + 932*n + 1004
Empirical for row n: (4*n+4)*2^(k-1) plus a quadratic polynomial in k
n=1: a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3); a(n) = 8*2^(n-1) + n
n=2: a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3); a(n) = 12*2^(n-1) + 4*n + 2
n=3: a(n) = 5*a(n-1) -9*a(n-2) +7*a(n-3) -2*a(n-4); a(n) = 16*2^(n-1) + n^2 + 11*n + 8
n=4: a(n) = 5*a(n-1) -9*a(n-2) +7*a(n-3) -2*a(n-4); a(n) = 20*2^(n-1) + 4*n^2 + 26*n + 22
n=5: a(n) = 5*a(n-1) -9*a(n-2) +7*a(n-3) -2*a(n-4); a(n) = 24*2^(n-1) + 11*n^2 + 57*n + 52
n=6: a(n) = 5*a(n-1) -9*a(n-2) +7*a(n-3) -2*a(n-4); a(n) = 28*2^(n-1) + 26*n^2 + 120*n + 114
n=7: a(n) = 5*a(n-1) -9*a(n-2) +7*a(n-3) -2*a(n-4); a(n) = 32*2^(n-1) + 57*n^2 + 247*n + 240
n=8: a(n) = 5*a(n-1) -9*a(n-2) +7*a(n-3) -2*a(n-4); a(n) = 36*2^(n-1) + 120*n^2 + 502*n + 494
n=9: a(n) = 5*a(n-1) -9*a(n-2) +7*a(n-3) -2*a(n-4); a(n) = 40*2^(n-1) + 247*n^2 + 1013*n + 1004
Comments