cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250779 Number of (n+1) X (4+1) 0..1 arrays with nondecreasing x(i,j)+x(i,j-1) in the i direction and nondecreasing absolute value of x(i,j)-x(i-1,j) in the j direction.

Original entry on oeis.org

99, 238, 534, 1152, 2426, 5028, 10306, 20960, 42394, 85420, 171666, 344392, 690122, 1381908, 2765858, 5534192, 11071354, 22146236, 44296626, 88598104, 177201834, 354410148, 708827714, 1417663872, 2835337306, 5670685388, 11341382866
Offset: 1

Views

Author

R. H. Hardin, Nov 27 2014

Keywords

Examples

			Some solutions for n=4:
..1..0..1..0..0....0..1..0..0..1....1..0..1..0..0....0..0..1..0..0
..1..0..1..0..1....0..1..0..0..1....1..0..1..0..0....0..0..1..0..1
..1..1..0..1..0....0..1..0..0..1....1..0..1..0..0....1..1..0..1..0
..1..1..1..0..1....0..1..0..0..1....1..0..1..1..1....1..1..0..1..0
..1..1..1..1..0....1..0..1..1..0....1..0..1..1..1....1..1..1..0..1
		

Crossrefs

Column 4 of A250783.

Formula

Empirical: a(n) = 6*a(n-1) - 14*a(n-2) + 16*a(n-3) - 9*a(n-4) + 2*a(n-5).
Conjectures from Colin Barker, Nov 19 2018: (Start)
G.f.: x*(99 - 356*x + 492*x^2 - 304*x^3 + 73*x^4) / ((1 - x)^4*(1 - 2*x)).
a(n) = (-288 + 507*2^n - 116*n - 12*n^2 - 4*n^3) / 6.
(End)