This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A250791 #8 Nov 20 2018 07:30:30 %S A250791 24,66,180,490,1336,3646,9956,27194,74288,202950,554460,1514802, %T A250791 4138504,11306590,30890164,84393482,230567264,629921462,1720977420, %U A250791 4701797730,12845550264,35094695950,95880492388,261950376634,715661738000 %N A250791 Number of (n+1) X (2+1) 0..1 arrays with nondecreasing min(x(i,j),x(i,j-1)) in the i direction and nondecreasing absolute value of x(i,j)-x(i-1,j) in the j direction. %H A250791 R. H. Hardin, <a href="/A250791/b250791.txt">Table of n, a(n) for n = 1..210</a> %F A250791 Empirical: a(n) = 4*a(n-1) - 3*a(n-2) - 2*a(n-3) + 2*a(n-4). %F A250791 Conjectures from _Colin Barker_, Nov 20 2018: (Start) %F A250791 G.f.: 2*x*(12 - 15*x - 6*x^2 + 8*x^3) / ((1 - x)^2*(1 - 2*x - 2*x^2)). %F A250791 a(n) = (-6 + (39-23*sqrt(3))*(1-sqrt(3))^n + 39*(1+sqrt(3))^n + 23*sqrt(3)*(1+sqrt(3))^n + 6*n) / 9. %F A250791 (End) %e A250791 Some solutions for n=4: %e A250791 ..1..0..1....0..0..0....1..0..0....0..0..1....1..0..1....0..1..0....0..1..0 %e A250791 ..1..0..1....0..0..1....1..1..1....0..1..0....1..0..1....0..1..0....1..0..1 %e A250791 ..0..1..0....0..0..1....1..1..1....0..0..1....0..1..0....1..0..1....1..1..0 %e A250791 ..0..1..0....0..1..0....1..1..1....0..1..0....1..0..1....0..1..0....1..1..1 %e A250791 ..1..0..1....0..0..1....1..1..1....0..0..1....1..0..0....1..0..1....1..1..1 %Y A250791 Column 2 of A250797. %K A250791 nonn %O A250791 1,1 %A A250791 _R. H. Hardin_, Nov 27 2014