A250797 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with nondecreasing min(x(i,j),x(i,j-1)) in the i direction and nondecreasing absolute value of x(i,j)-x(i-1,j) in the j direction.
10, 24, 24, 54, 66, 58, 118, 162, 180, 140, 252, 376, 482, 490, 338, 530, 838, 1190, 1430, 1336, 816, 1102, 1818, 2776, 3776, 4258, 3646, 1970, 2272, 3868, 6230, 9258, 12062, 12706, 9956, 4756, 4654, 8114, 13598, 21610, 31220, 38676, 37986, 27194, 11482
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..0..0..1..0....0..0..0..0..0....1..1..1..0..1....0..0..0..0..1 ..0..0..0..0..1....0..0..0..0..0....1..1..1..0..0....0..0..0..0..0 ..0..0..0..0..1....0..0..0..0..1....1..1..1..0..1....0..0..0..0..0 ..1..1..1..1..0....0..0..0..0..1....1..1..1..0..1....0..0..1..1..1 ..1..1..1..1..0....0..0..0..0..0....1..1..1..0..1....0..0..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..480
Crossrefs
Column 1 is A052542(n+2)
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2)
k=2: a(n) = 4*a(n-1) -3*a(n-2) -2*a(n-3) +2*a(n-4)
k=3: a(n) = 6*a(n-1) -10*a(n-2) +11*a(n-4) -6*a(n-5)
k=4: a(n) = 8*a(n-1) -20*a(n-2) +8*a(n-3) +33*a(n-4) -36*a(n-5) +8*a(n-7)
k=5: [order 9]
k=6: [order 11]
k=7: [order 13]
Empirical for row n:
n=1: a(n) = 3*a(n-1) -a(n-2) -2*a(n-3)
n=2: a(n) = 4*a(n-1) -4*a(n-2) -a(n-3) +2*a(n-4)
n=3: a(n) = 5*a(n-1) -8*a(n-2) +3*a(n-3) +3*a(n-4) -2*a(n-5)
n=4: a(n) = 4*a(n-1) -2*a(n-2) -9*a(n-3) +9*a(n-4) +6*a(n-5) -8*a(n-6) -a(n-7) +2*a(n-8)
n=5: [order 9]
n=6: [order 12]
n=7: [order 13]
Comments