A250812 T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing min(x(i,j),x(i-1,j)) in the j direction.
36, 100, 129, 225, 379, 432, 441, 873, 1315, 1389, 784, 1731, 3081, 4321, 4356, 1296, 3097, 6171, 10233, 13735, 13449, 2025, 5139, 11116, 20631, 32745, 42769, 41112, 3025, 8049, 18537, 37333, 66291, 102393, 131455, 124869, 4356, 12043, 29145, 62469
Offset: 1
Examples
Some solutions for n=4 k=4 ..1..1..0..0..0....1..0..0..0..0....1..1..1..1..0....0..0..0..0..0 ..0..0..1..1..1....0..0..0..0..0....0..0..0..0..0....2..2..2..2..2 ..1..1..2..2..2....2..2..2..2..2....2..2..2..2..2....2..2..2..2..2 ..0..0..1..1..1....1..1..1..1..2....2..2..2..2..2....1..1..1..1..2 ..0..0..1..2..2....0..1..1..1..2....0..0..1..1..2....1..1..1..1..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..241
Crossrefs
Row 1 is A000537(n+2)
Formula
Empirical: T(n,k) = (((5/12)*k^4 + (11/3)*k^3 + (157/12)*k^2 + (95/6)*k + 6)*3^n - ((1/2)*k^4 + (7/2)*k^3 + (23/2)*k^2 + (17/2)*k)*2^n + (1/4)*k^4 + 1*k^3 + (9/4)*k^2 - (1/2)*k)/2
Empirical for column k:
k=1: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3); a(n) = (39*3^n-24*2^n+3)/2
k=2: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3); a(n) = (126*3^n-99*2^n+20)/2
k=3: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3); a(n) = (304*3^n-264*2^n+66)/2
k=4: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3); a(n) = (620*3^n-570*2^n+162)/2
k=5: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3); a(n) = (1131*3^n-1080*2^n+335)/2
k=6: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3); a(n) = (1904*3^n-1869*2^n+618)/2
k=7: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3); a(n) = (3016*3^n-3024*2^n+1050)/2
Empirical for row n:
n=1: a(n) = (1/4)*n^4 + (5/2)*n^3 + (37/4)*n^2 + 15*n + 9
n=2: a(n) = 1*n^4 + 10*n^3 + 37*n^2 + 54*n + 27
n=3: a(n) = (15/4)*n^4 + 36*n^3 + (527/4)*n^2 + (359/2)*n + 81
n=4: a(n) = 13*n^4 + 121*n^3 + 439*n^2 + 573*n + 243
n=5: a(n) = (171/4)*n^4 + 390*n^3 + (5627/4)*n^2 + (3575/2)*n + 729
n=6: a(n) = 136*n^4 + 1225*n^3 + 4402*n^2 + 5499*n + 2187
n=7: a(n) = (1695/4)*n^4 + 3786*n^3 + (54287/4)*n^2 + (33539/2)*n + 6561
Comments