cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250814 Number of (2+1) X (n+1) 0..2 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing min(x(i,j),x(i-1,j)) in the j direction.

Original entry on oeis.org

129, 379, 873, 1731, 3097, 5139, 8049, 12043, 17361, 24267, 33049, 44019, 57513, 73891, 93537, 116859, 144289, 176283, 213321, 255907, 304569, 359859, 422353, 492651, 571377, 659179, 756729, 864723, 983881, 1114947, 1258689, 1415899
Offset: 1

Views

Author

R. H. Hardin, Nov 27 2014

Keywords

Examples

			Some solutions for n=4:
..1..1..1..0..0....2..2..1..1..1....1..1..0..0..0....2..1..1..1..1
..0..0..0..1..1....0..1..1..1..1....0..0..0..2..2....1..1..2..2..2
..0..0..1..2..2....0..1..1..1..2....0..0..0..2..2....0..0..1..2..2
		

Crossrefs

Row 2 of A250812.

Formula

Empirical: a(n) = 1*n^4 + 10*n^3 + 37*n^2 + 54*n + 27.
Conjectures from Colin Barker, Nov 21 2018: (Start)
G.f.: x*(129 - 266*x + 268*x^2 - 134*x^3 + 27*x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)