cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250853 T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing min(x(i,j),x(i-1,j)) in the j direction.

Original entry on oeis.org

100, 400, 543, 1225, 2457, 2670, 3136, 8037, 13097, 12311, 7056, 21436, 44797, 63631, 54410, 14400, 49599, 123016, 223933, 291165, 233683, 27225, 103293, 290646, 626416, 1043885, 1280447, 983950, 48400, 198297, 614965, 1499679, 2955136
Offset: 1

Views

Author

R. H. Hardin, Nov 28 2014

Keywords

Comments

Table starts
......100.......400.......1225.......3136........7056.......14400.......27225
......543......2457.......8037......21436.......49599......103293......198297
.....2670.....13097......44797.....123016......290646......614965.....1195457
....12311.....63631.....223933.....626416.....1499679.....3204951.....6279401
....54410....291165....1043885....2955136.....7134786....15344785....30214465
...233683...1280447....4648157...13263136....32201019....69543783...137379337
...983950...5480917...20067117...57570016...140301126...303858745...601566177
..4085631..23024631...84805533..244213216...596722599..1294875471..2567402601
.16796370..95448605..353060845.1019415136..2495502666..5422612945.10763029505
.68555723.391939087.1454214877.4206874336.10311967539.22429374423.44552408777

Examples

			Some solutions for n=3 k=4
..2..2..0..0..0....1..2..3..2..2....2..2..1..0..0....3..2..1..1..1
..0..0..0..0..0....0..1..2..2..3....0..0..0..0..0....0..0..0..0..0
..1..1..1..1..1....0..1..2..2..3....1..1..1..1..3....0..0..1..1..2
..0..1..1..1..3....0..1..2..2..3....0..0..0..1..3....0..0..1..1..2
		

Crossrefs

Row 1 is A001249(n+1)

Formula

Empirical T(n,k) = (((31/36)*k^6+(25/2)*k^5+(1229/18)*k^4+(620/3)*k^3+(10759/36)*k^2+(1181/6)*k+48)*4^n -((5/3)*k^6+(133/6)*k^5+(320/3)*k^4+(1717/6)*k^3+(944/3)*k^2+(344/3)*k)*3^n +(k^6+12*k^5+47*k^4+103*k^3+54*k^2-13*k)*2^n -((1/9)*k^6+(3/2)*k^5+(25/9)*k^4+(13/6)*k^3-(89/9)*k^2+(4/3)*k))/12
Empirical for column k:
k=1: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (832*4^n-846*3^n+204*2^n+2)/12
k=2: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (4838*4^n-6300*3^n+2214*2^n-80)/12
k=3: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (18104*4^n-26144*3^n+10680*2^n-644)/12
k=4: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (52650*4^n-80640*3^n+35820*2^n-2688)/12
k=5: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (129528*4^n-206190*3^n+96660*2^n-8190)/12
k=6: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (282492*4^n-462196*3^n+224994*2^n-20568)/12
k=7: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (562288*4^n-939120*3^n+470064*2^n-45220)/12
Empirical for row n:
n=1: a(n) = (1/36)*n^6 + (1/2)*n^5 + (133/36)*n^4 + (43/3)*n^3 + (277/9)*n^2 + (104/3)*n + 16
n=2: a(n) = (2/9)*n^6 + (47/12)*n^5 + (953/36)*n^4 + (1141/12)*n^3 + (6527/36)*n^2 + 172*n + 64
n=3: a(n) = (3/2)*n^6 + (74/3)*n^5 + (621/4)*n^4 + (3161/6)*n^3 + (3691/4)*n^2 + 783*n + 256
n=4: a(n) = (76/9)*n^6 + (1595/12)*n^5 + (28765/36)*n^4 + (31373/12)*n^3 + (155683/36)*n^2 + (10223/3)*n + 1024
n=5: a(n) = (763/18)*n^6 + (1949/3)*n^5 + (136493/36)*n^4 + (72691/6)*n^3 + (693923/36)*n^2 + (43319/3)*n + 4096
n=6: a(n) = 198*n^6 + (35807/12)*n^5 + (204911/12)*n^4 + (214827/4)*n^3 + (998209/12)*n^2 + (180451/3)*n + 16384
n=7: a(n) = (15887/18)*n^6 + (39464/3)*n^5 + (2674189/36)*n^4 + (462227/2)*n^3 + (12645859/36)*n^2 + (743119/3)*n + 65536