A250973 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with no 2X2 subblock having the sum of its diagonal elements less than the absolute difference of its antidiagonal elements.
14, 49, 49, 172, 308, 172, 604, 1945, 1945, 604, 2121, 12281, 22048, 12281, 2121, 7448, 77537, 249921, 249921, 77537, 7448, 26154, 489543, 2833397, 5089900, 2833397, 489543, 26154, 91841, 3090834, 32124018, 103684186, 103684186, 32124018
Offset: 1
Examples
Some solutions for n=3 k=4 ..0..0..0..0..1....0..0..0..1..1....0..1..0..0..0....0..0..0..1..0 ..0..0..0..1..1....0..1..1..0..0....0..1..1..1..1....1..1..1..0..1 ..1..1..1..0..1....1..1..0..1..1....0..1..0..0..0....1..1..0..1..0 ..1..1..0..1..1....0..0..1..1..0....1..1..0..0..0....0..1..0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..420
Crossrefs
Column 1 is A010904
Formula
Empirical for column k:
k=1: a(n) = 4*a(n-1) -2*a(n-2) +a(n-3)
k=2: a(n) = 8*a(n-1) -13*a(n-2) +17*a(n-3) -14*a(n-4) +3*a(n-5)
k=3: [order 9]
k=4: [order 17]
k=5: [order 31]
k=6: [order 57] for n>58
Comments