A251094 Number of (n+1) X (2+1) 0..1 arrays with no 2 X 2 subblock having its minimum diagonal element less than its minimum antidiagonal element.
41, 212, 1109, 5817, 30517, 160086, 839758, 4405079, 23107524, 121214121, 635847599, 3335437865, 17496560104, 91780937840, 481451239589, 2525527648328, 13248049600905, 69494712657097, 364545365754237, 1912279634115658
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..0....0..0..1....1..0..1....1..1..0....1..0..1....1..0..0....0..0..0 ..1..0..0....0..0..0....1..0..1....0..1..1....0..0..0....1..0..0....1..1..0 ..0..1..1....0..0..1....1..0..0....0..0..0....0..0..1....0..0..0....0..0..0 ..0..0..1....1..0..0....0..0..0....1..1..1....1..0..0....1..0..1....1..0..0 ..1..0..1....0..1..0....0..1..1....0..0..0....0..1..0....0..0..0....0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A251100.
Formula
Empirical: a(n) = 7*a(n-1) - 11*a(n-2) + 10*a(n-3) - 3*a(n-4).
Empirical g.f.: x*(41 - 75*x + 76*x^2 - 24*x^3) / (1 - 7*x + 11*x^2 - 10*x^3 + 3*x^4). - Colin Barker, Nov 25 2018