cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A251100 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with no 2X2 subblock having its minimum diagonal element less than its minimum antidiagonal element.

Original entry on oeis.org

13, 41, 41, 129, 212, 129, 406, 1109, 1109, 406, 1278, 5817, 9597, 5817, 1278, 4023, 30517, 82814, 82814, 30517, 4023, 12664, 160086, 713769, 1175519, 713769, 160086, 12664, 39865, 839758, 6151051, 16697127, 16697127, 6151051, 839758, 39865
Offset: 1

Views

Author

R. H. Hardin, Nov 29 2014

Keywords

Comments

Table starts
.....13........41.........129...........406.............1278...............4023
.....41.......212........1109..........5817............30517.............160086
....129......1109........9597.........82814...........713769............6151051
....406......5817.......82814.......1175519.........16697127..........237288487
...1278.....30517......713769......16697127........391088995.........9160138107
...4023....160086.....6151051.....237288487.......9160138107.......353489877714
..12664....839758....53009570....3372537762.....214512524583.....13640572890821
..39865...4405079...456842112...47933018061....5023196973684....526395665662695
.125491..23107524..3937123328..681254534234..117627015646158..20314343818684906
.395033.121214121.33930621210.9682407527191.2754453306431041.783961045672945429

Examples

			Some solutions for n=3 k=4
..0..0..1..1..0....0..1..1..0..1....1..1..1..0..0....0..0..1..1..0
..0..0..0..1..1....0..1..1..0..1....0..0..1..0..0....1..0..0..0..0
..0..0..0..0..1....0..0..1..0..0....0..0..0..0..0....0..0..0..1..0
..0..1..1..0..1....1..0..1..1..1....1..0..0..1..0....0..0..0..1..0
		

Crossrefs

Column 1 is A052529(n+2)

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1) -3*a(n-2) +a(n-3)
k=2: a(n) = 7*a(n-1) -11*a(n-2) +10*a(n-3) -3*a(n-4)
k=3: [order 9]
k=4: [order 17]
k=5: [order 31]
k=6: [order 57] for n>58