A251122 Number of (n+1) X (2+1) 0..1 arrays with no 2 X 2 subblock having the sum of its diagonal elements greater than the maximum of its antidiagonal elements.
21, 40, 69, 117, 193, 315, 510, 823, 1326, 2136, 3442, 5550, 8955, 14458, 23355, 37743, 61015, 98661, 159564, 258097, 417516, 675450, 1092784, 1768032, 2860593, 4628380, 7488705, 12116793, 19605181, 31721631, 51326442, 83047675, 134373690
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..1....0..0..0....0..0..0....1..1..1....0..0..0....0..0..0....0..1..1 ..0..0..1....1..1..1....0..0..0....0..0..0....1..1..1....1..1..1....0..0..0 ..0..0..1....1..0..0....0..0..0....1..1..1....0..0..0....0..0..0....0..0..0 ..1..0..1....1..0..0....0..0..0....0..0..0....0..0..0....0..0..0....1..1..1 ..1..0..0....1..0..0....1..1..1....1..1..1....0..0..0....1..1..1....0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A251128.
Formula
Empirical: a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 2*a(n-4) - a(n-5).
Empirical g.f.: x*(21 - 44*x + 14*x^2 + 20*x^3 - 12*x^4) / ((1 - x)^3*(1 - x - x^2)). - Colin Barker, Nov 25 2018