cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A251128 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with no 2X2 subblock having the sum of its diagonal elements greater than the maximum of its antidiagonal elements.

Original entry on oeis.org

10, 21, 21, 40, 40, 40, 72, 69, 69, 72, 125, 117, 108, 117, 125, 212, 193, 173, 173, 193, 212, 354, 315, 272, 266, 272, 315, 354, 585, 510, 430, 401, 401, 430, 510, 585, 960, 823, 680, 612, 580, 612, 680, 823, 960, 1568, 1326, 1080, 938, 854, 854, 938, 1080, 1326
Offset: 1

Views

Author

R. H. Hardin, Nov 30 2014

Keywords

Comments

Table starts
...10...21...40...72..125..212..354..585...960..1568..2553..4148..6730.10909
...21...40...69..117..193..315..510..823..1326..2136..3442..5550..8955.14458
...40...69..108..173..272..430..680.1080..1721..2752..4413..7093.11421.18415
...72..117..173..266..401..612..938.1452..2266..3565..5646..8991.14379.23071
..125..193..272..401..580..854.1268.1912..2921..4520..7069.11153.17717.28291
..212..315..430..612..854.1214.1743.2550..3795..5747..8835.13757.21640.34309
..354..510..680..938.1268.1743.2420.3429..4957..7321.11025.16890.26241.41224
..585..823.1080.1452.1912.2550.3429.4702..6585..9447.13873.20817.31818.49369
..960.1326.1721.2266.2921.3795.4957.6585..8926.12405.17694.25890.38762.59176
.1568.2136.2752.3565.4520.5747.7321.9447.12405.16680.23037.32726.47762.71410

Examples

			Some solutions for n=4 k=4
..0..1..1..1..1....0..0..0..1..1....0..0..1..0..1....1..0..0..0..1
..0..0..0..0..0....0..0..0..1..0....1..0..1..0..1....1..0..0..0..1
..1..1..1..1..1....0..0..0..1..0....1..0..1..0..1....1..0..0..0..0
..0..0..0..0..0....0..0..0..1..0....1..0..1..0..1....1..0..0..0..0
..0..0..0..0..0....1..1..0..1..0....1..0..1..0..0....1..0..0..0..0
		

Crossrefs

Column 1 is A001891(n+2)

Formula

Empirical for column k:
k=1: a(n) = 3*a(n-1) -2*a(n-2) -a(n-3) +a(n-4)
k=2: a(n) = 4*a(n-1) -5*a(n-2) +a(n-3) +2*a(n-4) -a(n-5)
k=3: a(n) = 4*a(n-1) -5*a(n-2) +a(n-3) +2*a(n-4) -a(n-5) for n>6
k=4: a(n) = 4*a(n-1) -5*a(n-2) +a(n-3) +2*a(n-4) -a(n-5) for n>6
k=5: a(n) = 4*a(n-1) -5*a(n-2) +a(n-3) +2*a(n-4) -a(n-5) for n>6
k=6: a(n) = 4*a(n-1) -5*a(n-2) +a(n-3) +2*a(n-4) -a(n-5) for n>6
k=7: a(n) = 4*a(n-1) -5*a(n-2) +a(n-3) +2*a(n-4) -a(n-5) for n>6