A251147 Number of (n+1) X (6+1) 0..2 arrays with every 2 X 2 subblock summing to 4 and no 2 X 2 subblock having exactly two nonzero entries.
427, 565, 777, 1141, 1743, 2763, 4491, 7453, 12569, 21501, 37255, 65355, 116035, 208469, 378889, 696357, 1293471, 2426507, 4593563, 8767469, 16856057, 32613805, 63450647, 124026251, 243400723, 479274853, 946371561, 1873038613, 3714194799
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..2..0..2..1..2..1....1..2..0..1..0..1..0....0..2..0..2..1..2..1 ..1..1..1..1..0..1..0....0..1..1..2..1..2..1....1..1..1..1..0..1..0 ..1..1..1..1..2..1..2....2..1..1..0..1..0..1....1..1..1..1..2..1..2 ..1..1..1..1..0..1..0....1..0..2..1..2..1..2....1..1..1..1..0..1..0 ..1..1..1..1..2..1..2....2..1..1..0..1..0..1....0..2..0..2..1..2..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 6 of A251149.
Formula
Empirical: a(n) = 3*a(n-1) - 5*a(n-3) + a(n-4) + 2*a(n-5).
Empirical g.f.: x*(427 - 716*x - 918*x^2 + 945*x^3 + 718*x^4) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 - x - x^2)). - Colin Barker, Nov 26 2018