A251148 Number of (n+1) X (7+1) 0..2 arrays with every 2 X 2 subblock summing to 4 and no 2 X 2 subblock having exactly two nonzero entries.
853, 1075, 1413, 1987, 2925, 4491, 7101, 11491, 18917, 31587, 53389, 91275, 157789, 275843, 487717, 872259, 1577901, 2886539, 5337725, 9971363, 18803813, 35765155, 68549453, 132276107, 256749085, 500872771, 981317541, 1929582211, 3805684077
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1..0..1..1..1..1..2..1....2..0..2..0..1..0..1..1....0..1..1..0..1..2..1..1 ..2..1..2..0..2..0..1..0....1..1..1..1..2..1..2..0....2..1..1..2..1..0..1..1 ..1..0..1..1..1..1..2..1....2..0..2..0..1..0..1..1....0..1..1..0..1..2..1..1 ..1..2..1..1..1..1..0..1....1..1..1..1..2..1..2..0....2..1..1..2..1..0..1..1 ..1..0..1..1..1..1..2..1....2..0..2..0..1..0..1..1....0..1..1..0..1..2..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 7 of A251149.
Formula
Empirical: a(n) = 3*a(n-1) - 5*a(n-3) + a(n-4) + 2*a(n-5).
Empirical g.f.: x*(853 - 1484*x - 1812*x^2 + 2013*x^3 + 1486*x^4) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 - x - x^2)). - Colin Barker, Nov 26 2018