A251149 T(n,k) = Number of (n+1) X (k+1) 0..2 arrays with every 2 X 2 subblock summing to 4 and no 2 X 2 subblock having exactly two nonzero entries.
13, 27, 27, 53, 49, 53, 107, 87, 87, 107, 213, 161, 143, 161, 213, 427, 299, 247, 247, 299, 427, 853, 565, 433, 401, 433, 565, 853, 1707, 1075, 777, 667, 667, 777, 1075, 1707, 3413, 2065, 1413, 1141, 1061, 1141, 1413, 2065, 3413, 6827, 3991, 2607, 1987, 1743
Offset: 1
Examples
Some solutions for n=4, k=4: ..0..1..0..2..1....1..0..1..1..1....1..0..1..1..2....2..1..2..1..1 ..1..2..1..1..0....1..2..1..1..1....1..2..1..1..0....0..1..0..1..1 ..1..0..1..1..2....1..0..1..1..1....0..1..0..2..1....1..2..1..2..0 ..1..2..1..1..0....1..2..1..1..1....1..2..1..1..0....0..1..0..1..1 ..1..0..1..1..2....1..0..1..1..1....0..1..0..2..1....2..1..2..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..364
Crossrefs
Column 1 is A048573(n+2).
Formula
Empirical for column k:
k=1: a(n) = a(n-1) +2*a(n-2)
k=2: a(n) = 3*a(n-1) -5*a(n-3) +a(n-4) +2*a(n-5)
k=3: a(n) = 3*a(n-1) -5*a(n-3) +a(n-4) +2*a(n-5)
k=4: a(n) = 3*a(n-1) -5*a(n-3) +a(n-4) +2*a(n-5)
k=5: a(n) = 3*a(n-1) -5*a(n-3) +a(n-4) +2*a(n-5)
k=6: a(n) = 3*a(n-1) -5*a(n-3) +a(n-4) +2*a(n-5)
k=7: a(n) = 3*a(n-1) -5*a(n-3) +a(n-4) +2*a(n-5)
Comments