cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A251149 T(n,k) = Number of (n+1) X (k+1) 0..2 arrays with every 2 X 2 subblock summing to 4 and no 2 X 2 subblock having exactly two nonzero entries.

Original entry on oeis.org

13, 27, 27, 53, 49, 53, 107, 87, 87, 107, 213, 161, 143, 161, 213, 427, 299, 247, 247, 299, 427, 853, 565, 433, 401, 433, 565, 853, 1707, 1075, 777, 667, 667, 777, 1075, 1707, 3413, 2065, 1413, 1141, 1061, 1141, 1413, 2065, 3413, 6827, 3991, 2607, 1987, 1743
Offset: 1

Views

Author

R. H. Hardin, Nov 30 2014

Keywords

Comments

Table starts:
...13...27...53...107...213...427...853..1707..3413...6827..13653..27307..54613
...27...49...87...161...299...565..1075..2065..3991...7761..15163..29749..58563
...53...87..143...247...433...777..1413..2607..4863...9167..17433..33417..64493
..107..161..247...401...667..1141..1987..3521..6327..11521..21227..39541..74387
..213..299..433...667..1061..1743..2925..5003..8689..15307..27317..49359..90237
..427..565..777..1141..1743..2763..4491..7453.12569..21501..37255..65355.116035
..853.1075.1413..1987..2925..4491..7101.11491.18917..31587..53389..91275.157789
.1707.2065.2607..3521..5003..7453.11491.18193.29359..48081..79675.133405.225555
.3413.3991.4863..6327..8689.12569.18917.29359.46575..75087.122521.201881.335501
.6827.7761.9167.11521.15307.21501.31587.48081.75087.119441.192507.313341.514067

Examples

			Some solutions for n=4, k=4:
..0..1..0..2..1....1..0..1..1..1....1..0..1..1..2....2..1..2..1..1
..1..2..1..1..0....1..2..1..1..1....1..2..1..1..0....0..1..0..1..1
..1..0..1..1..2....1..0..1..1..1....0..1..0..2..1....1..2..1..2..0
..1..2..1..1..0....1..2..1..1..1....1..2..1..1..0....0..1..0..1..1
..1..0..1..1..2....1..0..1..1..1....0..1..0..2..1....2..1..2..1..1
		

Crossrefs

Column 1 is A048573(n+2).

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +2*a(n-2)
k=2: a(n) = 3*a(n-1) -5*a(n-3) +a(n-4) +2*a(n-5)
k=3: a(n) = 3*a(n-1) -5*a(n-3) +a(n-4) +2*a(n-5)
k=4: a(n) = 3*a(n-1) -5*a(n-3) +a(n-4) +2*a(n-5)
k=5: a(n) = 3*a(n-1) -5*a(n-3) +a(n-4) +2*a(n-5)
k=6: a(n) = 3*a(n-1) -5*a(n-3) +a(n-4) +2*a(n-5)
k=7: a(n) = 3*a(n-1) -5*a(n-3) +a(n-4) +2*a(n-5)