This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A251185 #7 Jun 04 2025 12:22:18 %S A251185 1,2,12,120,1810,37800,1036154,35906304,1529029674,78259648920, %T A251185 4729511693962,332593831890144,26886410844369674,2472715167660949848, %U A251185 256431103539829234410,29755101352498831197696,3837048614372255780199658,546600045766108847708692440,85556735070332670228234922442 %N A251185 E.g.f. satisfies: A(x) = x + x*A( -log(2-exp(x)) ). %C A251185 The function -log(2-exp(x)) is the e.g.f. of A000629, the number of necklaces of partitions of n+1 labeled beads. %C A251185 Note also that the n-th iteration of -log(2-exp(x)) equals log((n-(n-1)*exp(x))/((n+1)-n*exp(x))) = log(1+x) o x/(1-n*x) o exp(x)-1, a composition of functions. %F A251185 E.g.f.: Sum_{n>=0} Product_{k=0..n} log( (k - (k-1)*exp(x)) / ((k+1) - k*exp(x)) ). %e A251185 E.g.f.: A(x) = x + 2*x^2/2! + 12*x^3/3! + 120*x^4/4! + 1810*x^5/5! +... %e A251185 such that A(x) = x + x*A( -log(2-exp(x)) ), where %e A251185 -log(2-exp(x)) = x + 2*x^2/2! + 6*x^3/3! + 26*x^4/4! + 150*x^5/5! + 1082*x^6/6! + 9366*x^7/7! +...+ A000629(n)*x^n/n! +... %e A251185 The e.g.f. equals the sum of products of iterations of -log(2-exp(x)): %e A251185 A(x) = x + x*log(1/(2-exp(x))) %e A251185 + x*log(1/(2-exp(x)))*log((2-exp(x))/(3-2*exp(x))) %e A251185 + x*log(1/(2-exp(x)))*log((2-exp(x))/(3-2*exp(x)))*log((3-2*exp(x))/(4-3*exp(x))) %e A251185 + x*log(1/(2-exp(x)))*log((2-exp(x))/(3-2*exp(x)))*log((3-2*exp(x))/(4-3*exp(x)))*log((4-3*exp(x))/(3-2*exp(x))) +... %e A251185 Related expansion. %e A251185 A(-log(2-exp(x))) = x + 4*x^2/2! + 30*x^3/3! + 362*x^4/4! + 6300*x^5/5! + 148022*x^6/6! + 4488288*x^7/7! + 169892186*x^8/8! + 7825964892*x^9/9! +... %o A251185 (PARI) {a(n)=local(A=x,X=x+x*O(x^n)); for(i=1,n, A = x + x*subst(A,x,-log(2-exp(X))) ); n!*polcoeff(A,n)} %o A251185 for(n=1,20,print1(a(n),", ")) %o A251185 (PARI) {a(n)=local(A=x,X=x+x*O(x^n)); A = sum(m=0,n, prod(k=0,m, log( (k-(k-1)*exp(X)) / ((k+1)-k*exp(X)) ) ) ); n!*polcoeff(A,n)} %o A251185 for(n=1,20,print1(a(n),", ")) %Y A251185 Cf. A000629, A201338. %K A251185 nonn %O A251185 1,2 %A A251185 _Paul D. Hanna_, Nov 30 2014