A251221 Number of (n+1) X (1+1) 0..1 arrays with no 2 X 2 subblock having the minimum of its diagonal elements greater than the absolute difference of its antidiagonal elements.
14, 49, 171, 597, 2084, 7275, 25396, 88654, 309479, 1080349, 3771351, 13165272, 45958169, 160433700, 560052166, 1955065729, 6824867819, 23824682749, 83168718156, 290330652147, 1013504710004, 3538006716150, 12350698916311
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0....0..0....0..0....0..0....0..0....0..0....0..0....0..1....0..0....1..0 ..1..0....0..1....1..1....0..0....0..1....1..0....0..0....0..1....0..0....0..0 ..1..0....0..0....0..0....0..1....1..1....1..0....0..0....0..1....1..0....0..1 ..0..0....0..0....0..0....0..1....0..1....1..1....0..1....0..0....1..1....1..0 ..1..0....0..0....1..0....1..1....0..0....0..0....1..1....0..0....1..0....1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A251228.
Formula
Empirical: a(n) = 3*a(n-1) + 2*a(n-2) - a(n-3).
Empirical g.f.: x*(14 + 7*x - 4*x^2) / (1 - 3*x - 2*x^2 + x^3). - Colin Barker, Feb 25 2018
Comments