A251222 Number of (n+1) X (2+1) 0..1 arrays with no 2 X 2 subblock having the minimum of its diagonal elements greater than the absolute difference of its antidiagonal elements.
49, 305, 1892, 11753, 72985, 453273, 2814985, 17482154, 108570830, 674266427, 4187452312, 26005680486, 161505221644, 1003009195172, 6229070707553, 38684911434209, 240248095245952, 1492032555580773, 9266092805568853
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..1..1....0..1..1....1..1..0....1..0..1....0..0..0....1..1..1....0..1..1 ..0..0..1....0..1..0....0..0..0....0..0..0....0..0..1....0..0..0....1..0..1 ..0..0..0....0..1..1....0..0..0....1..1..1....0..1..1....1..0..1....1..1..0 ..0..0..1....1..0..0....0..0..0....0..1..0....0..0..0....0..0..0....0..0..0 ..0..0..0....0..0..1....1..1..1....1..1..1....0..0..0....1..0..1....0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A251228.
Formula
Empirical: a(n) = 5*a(n-1) + 9*a(n-2) - 8*a(n-3) - 8*a(n-4) + 3*a(n-5).
Empirical g.f.: x*(49 + 60*x - 74*x^2 - 60*x^3 + 24*x^4) / ((1 - x)*(1 + x)*(1 - 5*x - 8*x^2 + 3*x^3)). - Colin Barker, Nov 27 2018