A251225 Number of (n+1)X(5+1) 0..1 arrays with no 2X2 subblock having the minimum of its diagonal elements greater than the absolute difference of its antidiagonal elements.
2084, 72985, 2515011, 87024544, 3007738372, 103986727042, 3594807908974, 124275144041759, 4296252165879236, 148523812761431640, 5134547519926425245, 177504075991625903000, 6136411350172751480986, 212139042310887309043390
Offset: 1
Keywords
Examples
Some solutions for n=2 ..1..1..0..0..1..0....1..0..1..0..0..0....0..1..1..0..1..0....0..1..1..0..0..1 ..1..0..0..1..1..0....0..0..1..1..0..0....0..0..0..0..1..1....0..0..1..1..1..0 ..1..0..0..0..0..0....1..1..0..1..0..0....0..0..1..0..0..1....1..1..0..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 21*a(n-1) +554*a(n-2) -1341*a(n-3) -56723*a(n-4) -7614*a(n-5) +2277951*a(n-6) +445571*a(n-7) -46434220*a(n-8) +32482888*a(n-9) +467723527*a(n-10) -889155765*a(n-11) -1188153000*a(n-12) +4147652079*a(n-13) -132672964*a(n-14) -8042725671*a(n-15) +4499239992*a(n-16) +7457116236*a(n-17) -6933658033*a(n-18) -3126154333*a(n-19) +4558838720*a(n-20) +384337441*a(n-21) -1441277326*a(n-22) +61108155*a(n-23) +221926922*a(n-24) -13300621*a(n-25) -18641195*a(n-26) -491525*a(n-27) +335825*a(n-28) +5625*a(n-29)
Comments