A251228 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with no 2X2 subblock having the minimum of its diagonal elements greater than the absolute difference of its antidiagonal elements.
14, 49, 49, 171, 305, 171, 597, 1892, 1892, 597, 2084, 11753, 20782, 11753, 2084, 7275, 72985, 228689, 228689, 72985, 7275, 25396, 453273, 2515011, 4462968, 2515011, 453273, 25396, 88654, 2814985, 27662994, 87024544, 87024544, 27662994, 2814985
Offset: 1
Examples
Some solutions for n=3 k=4 ..0..0..0..0..1....0..0..0..1..0....0..0..1..0..1....0..0..0..1..1 ..1..0..0..1..0....0..1..1..0..0....0..0..1..0..1....0..1..0..1..0 ..0..0..0..1..1....0..0..0..0..1....0..0..1..0..0....1..1..0..0..0 ..1..0..1..1..0....1..1..0..1..0....0..0..0..0..0....1..0..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..449
Formula
Empirical for column k:
k=1: a(n) = 3*a(n-1) +2*a(n-2) -a(n-3)
k=2: a(n) = 5*a(n-1) +9*a(n-2) -8*a(n-3) -8*a(n-4) +3*a(n-5)
k=3: [order 8]
k=4: [order 17]
k=5: [order 29]
k=6: [order 54] for n>55
k=7: [order 99] for n>101
Comments