This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A251240 #19 Jan 26 2025 09:10:46 %S A251240 4,5,11,40,124,187,273,313,505,747,751,1280,1478,1563,1841,2386,3130, %T A251240 3134,4196,4493,4497,5455,6002,6877,8158,9047,9276,10190,10194,11157, %U A251240 14182,15086,16762,16766,19758,20051,21749,23435,24601,26398,28655,28659,32636 %N A251240 Indices of squares of primes in A098550. %H A251240 Chai Wah Wu, <a href="/A251240/b251240.txt">Table of n, a(n) for n = 1..175</a> %F A251240 A098550(a(n)) = A001248(n). %F A251240 A062799(A098550(a(n))) = 2. %o A251240 (Haskell) %o A251240 a251240 n = a251240_list !! (n-1) %o A251240 a251240_list = filter ((== 2) . a062799 . fromIntegral . a098550) [1..] %o A251240 (Python) %o A251240 from gmpy2 import gcd, is_square, is_prime, isqrt %o A251240 A251240_list, l1, l2, s, b = [], 3, 2, 4, {} %o A251240 for n in range(4,10**4): %o A251240 i = s %o A251240 while True: %o A251240 if not i in b and gcd(i,l1) == 1 and gcd(i,l2) > 1: %o A251240 l2, l1, b[i] = l1, i, 1 %o A251240 while s in b: %o A251240 b.pop(s) %o A251240 s += 1 %o A251240 if is_square(i) and is_prime(isqrt(i)): %o A251240 A251240_list.append(n) %o A251240 break %o A251240 i += 1 %o A251240 print(A251240_list) # _Chai Wah Wu_, Dec 06 2014 %Y A251240 Subsequence of A251241. %Y A251240 Cf. A001248, A062799, A098550. %K A251240 nonn %O A251240 1,1 %A A251240 _Reinhard Zumkeller_, Dec 02 2014