cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A251262 Number of (n+1) X (2+1) 0..1 arrays with no 2 X 2 subblock having x11-x00 less than x10-x01.

Original entry on oeis.org

26, 114, 480, 2058, 8812, 37772, 161906, 694042, 2975162, 12753740, 54671978, 234364684, 1004661088, 4306723662, 18461816670, 79141059954, 339257370296, 1454309095546, 6234249070708, 26724622430876, 114561583275826
Offset: 1

Views

Author

R. H. Hardin, Dec 01 2014

Keywords

Examples

			Some solutions for n=4:
..0..1..0....1..1..1....1..1..1....0..0..0....0..1..0....1..0..1....0..1..1
..1..0..1....0..1..1....0..1..1....0..0..0....0..0..1....0..1..1....1..1..1
..0..1..1....0..0..0....0..0..0....1..1..1....0..1..0....0..1..1....0..0..1
..0..0..0....0..0..0....0..0..1....0..1..1....0..0..1....0..1..1....0..0..1
..1..1..1....0..1..1....0..1..1....1..1..1....1..1..0....1..0..0....0..1..1
		

Crossrefs

Column 2 of A251268.

Formula

Empirical: a(n) = 5*a(n-1) - 2*a(n-2) - 5*a(n-3) + 2*a(n-4).
Empirical g.f.: 2*x*(13 - 8*x - 19*x^2 + 8*x^3) / (1 - 5*x + 2*x^2 + 5*x^3 - 2*x^4). - Colin Barker, Nov 27 2018

A251263 Number of (n+1)X(3+1) 0..1 arrays with no 2X2 subblock having x11-x00 less than x10-x01.

Original entry on oeis.org

57, 313, 1667, 9109, 49872, 273607, 1501739, 8244503, 45265163, 248529844, 1364574377, 7492353561, 41137689397, 225871759293, 1240178072856, 6809359068477, 37387672585765, 205281890979411, 1127126987808309
Offset: 1

Views

Author

R. H. Hardin, Dec 01 2014

Keywords

Comments

Column 3 of A251268

Examples

			Some solutions for n=4
..1..1..1..1....1..1..1..1....0..1..1..1....0..0..1..1....0..0..0..1
..0..0..1..1....0..0..1..1....0..0..1..1....0..0..0..0....1..1..1..1
..0..0..0..0....0..1..1..1....0..0..1..1....0..1..1..1....1..1..1..1
..0..1..1..1....0..0..1..1....0..0..0..0....0..1..1..1....0..1..1..1
..0..0..0..0....1..1..1..1....0..1..1..1....1..0..0..0....1..0..0..0
		

Formula

Empirical: a(n) = 6*a(n-1) +6*a(n-2) -55*a(n-3) +21*a(n-4) +97*a(n-5) -48*a(n-6) -52*a(n-7) +25*a(n-8) +5*a(n-9) -2*a(n-10)

A251264 Number of (n+1)X(4+1) 0..1 arrays with no 2X2 subblock having x11-x00 less than x10-x01.

Original entry on oeis.org

120, 772, 4930, 32636, 217634, 1457326, 9772880, 65582500, 440223510, 2955392154, 19841767762, 133216123406, 894412534702, 6005113336592, 40318603143004, 270701212074848, 1817502901804920, 12202817537105258, 81930416102796122
Offset: 1

Views

Author

R. H. Hardin, Dec 01 2014

Keywords

Comments

Column 4 of A251268

Examples

			Some solutions for n=4
..0..0..0..0..0....0..0..1..0..0....0..0..0..0..1....0..1..1..0..1
..0..0..0..0..1....0..0..0..1..1....1..1..1..1..1....0..0..0..1..1
..0..0..1..1..0....0..0..1..0..1....0..0..0..0..0....0..0..0..1..1
..0..0..0..0..1....1..1..0..1..1....0..0..0..0..0....0..0..0..1..1
..0..0..0..1..0....0..0..1..0..0....0..0..0..0..1....0..0..1..0..0
		

Formula

Empirical: a(n) = 10*a(n-1) -11*a(n-2) -119*a(n-3) +288*a(n-4) +236*a(n-5) -1082*a(n-6) +141*a(n-7) +1550*a(n-8) -732*a(n-9) -936*a(n-10) +648*a(n-11) +181*a(n-12) -198*a(n-13) +14*a(n-14) +13*a(n-15) -2*a(n-16)

A251265 Number of (n+1)X(5+1) 0..1 arrays with no 2X2 subblock having x11-x00 less than x10-x01.

Original entry on oeis.org

247, 1775, 13052, 100843, 790734, 6247708, 49523566, 393172015, 3123669457, 24825649060, 197336983976, 1568744380184, 12471338622425, 99147670133944, 788235696873315, 6266596802635677, 49820538186135672, 396082433072779827
Offset: 1

Views

Author

R. H. Hardin, Dec 01 2014

Keywords

Comments

Column 5 of A251268

Examples

			Some solutions for n=4
..0..0..1..0..0..0....0..0..0..0..1..1....0..1..0..1..0..0....0..0..0..0..0..1
..0..0..0..1..1..1....1..1..1..1..1..1....0..0..1..0..1..1....0..0..1..1..1..0
..1..1..1..1..1..1....0..1..1..1..1..1....0..0..0..1..1..1....0..0..0..0..0..1
..0..0..0..0..1..1....1..0..1..1..1..1....0..0..0..1..1..1....0..0..0..0..1..1
..0..0..0..1..0..1....0..1..0..0..0..0....1..1..1..0..0..1....0..0..0..0..0..0
		

Formula

Empirical: a(n) = 11*a(n-1) +25*a(n-2) -557*a(n-3) +417*a(n-4) +10537*a(n-5) -19095*a(n-6) -98114*a(n-7) +246975*a(n-8) +493227*a(n-9) -1642630*a(n-10) -1333320*a(n-11) +6536456*a(n-12) +1447446*a(n-13) -16694903*a(n-14) +2009237*a(n-15) +28399782*a(n-16) -9693504*a(n-17) -32722458*a(n-18) +16381621*a(n-19) +25543750*a(n-20) -16165287*a(n-21) -13265317*a(n-22) +10184940*a(n-23) +4371851*a(n-24) -4166286*a(n-25) -812484*a(n-26) +1089550*a(n-27) +50756*a(n-28) -174763*a(n-29) +8480*a(n-30) +15983*a(n-31) -1709*a(n-32) -738*a(n-33) +103*a(n-34) +13*a(n-35) -2*a(n-36)

A251266 Number of (n+1)X(6+1) 0..1 arrays with no 2X2 subblock having x11-x00 less than x10-x01.

Original entry on oeis.org

502, 3894, 31936, 279718, 2510004, 22806904, 208452452, 1910905110, 17543333688, 161181383956, 1481444894708, 13618944927408, 125212172603876, 1151259684237236, 10585524477077008, 97332520279830066, 894966894170134936
Offset: 1

Views

Author

R. H. Hardin, Dec 01 2014

Keywords

Comments

Column 6 of A251268

Examples

			Some solutions for n=3
..0..0..1..1..1..1..1....0..0..0..0..0..1..0....0..0..1..1..1..1..1
..0..0..0..1..1..1..1....0..0..1..1..1..0..1....0..1..1..1..1..1..1
..1..1..1..0..0..0..1....0..1..0..0..0..1..1....0..1..1..1..1..1..1
..0..0..0..1..1..1..1....1..0..1..1..1..1..1....0..0..0..1..1..1..1
		

Formula

Empirical recurrence of order 62 (see link above)

A251267 Number of (n+1)X(7+1) 0..1 arrays with no 2X2 subblock having x11-x00 less than x10-x01.

Original entry on oeis.org

1013, 8277, 73805, 715685, 7189937, 73607411, 760734085, 7901650053, 82288916360, 858174176431, 8956460879354, 93513621828339, 976584141141835, 10199930967838789, 106540252006060732, 1112874401391136229
Offset: 1

Views

Author

R. H. Hardin, Dec 01 2014

Keywords

Comments

Column 7 of A251268

Examples

			Some solutions for n=3
..0..1..0..1..1..1..0..0....0..0..0..0..1..0..1..1....1..0..1..1..1..0..0..1
..0..0..1..0..0..0..1..1....0..0..1..1..0..1..1..1....0..1..0..0..0..1..1..1
..0..0..0..1..1..1..1..1....0..1..0..0..1..0..1..1....0..0..1..1..1..0..0..1
..0..0..1..0..0..0..1..1....0..0..1..1..0..1..0..1....0..0..0..0..0..1..1..1
		

A251269 Number of (2+1) X (n+1) 0..1 arrays with no 2 X 2 subblock having x11-x00 less than x10-x01.

Original entry on oeis.org

35, 114, 313, 772, 1775, 3894, 8277, 17224, 35339, 71834, 145137, 292108, 586471, 1175678, 2354637, 4713168, 9430915, 18867170, 37740521, 75488148, 150984415, 301978054, 603966533, 1207944792, 2415902715, 4831820074, 9663656417
Offset: 1

Views

Author

R. H. Hardin, Dec 01 2014

Keywords

Examples

			Some solutions for n=4:
..1..0..0..0..1....0..0..0..1..1....0..1..1..1..1....1..1..1..1..1
..0..1..1..1..0....0..0..0..0..1....0..0..0..1..1....0..0..0..0..1
..1..0..0..0..1....0..0..1..1..1....0..0..0..0..0....0..0..0..1..0
		

Crossrefs

Row 2 of A251268.

Formula

Empirical: a(n) = 6*a(n-1) - 14*a(n-2) + 16*a(n-3) - 9*a(n-4) + 2*a(n-5).
Conjectures from Colin Barker, Nov 27 2018: (Start)
G.f.: x*(35 - 96*x + 119*x^2 - 70*x^3 + 16*x^4) / ((1 - x)^4*(1 - 2*x)).
a(n) = 8*(9*2^n-8) - (109*n)/3 - 8*n^2 - (2*n^3)/3.
(End)

A251270 Number of (3+1) X (n+1) 0..1 arrays with no 2 X 2 subblock having x11-x00 less than x10-x01.

Original entry on oeis.org

108, 480, 1667, 4930, 13052, 31936, 73805, 163604, 351804, 740008, 1532159, 3136950, 6372636, 12876648, 25924809, 52069752, 104417740, 209182288, 418791387, 838101930, 1676828540, 3354401200, 6709680485, 13420387996
Offset: 1

Views

Author

R. H. Hardin, Dec 01 2014

Keywords

Examples

			Some solutions for n=4:
..0..0..0..1..1....0..0..1..0..1....0..0..1..0..1....0..1..0..1..1
..0..0..0..1..1....1..1..0..1..0....0..0..0..1..1....0..0..1..1..1
..0..0..0..1..1....0..0..1..0..1....0..1..1..1..1....0..0..0..1..1
..0..0..1..1..1....1..1..0..1..1....0..0..0..0..0....0..0..0..0..0
		

Crossrefs

Row 3 of A251268.

Formula

Empirical: a(n) = 9*a(n-1) - 35*a(n-2) + 77*a(n-3) - 105*a(n-4) + 91*a(n-5) - 49*a(n-6) + 15*a(n-7) - 2*a(n-8).
Conjectures from Colin Barker, Nov 27 2018: (Start)
G.f.: x*(108 - 492*x + 1127*x^2 - 1589*x^3 + 1407*x^4 - 769*x^5 + 238*x^6 - 32*x^7) / ((1 - x)^7*(1 - 2*x)).
a(n) = (5760*(25*2^(1 + n)-49) - 186828*n - 57236*n^2 - 9885*n^3 - 905*n^4 - 27*n^5 + n^6) / 360.
(End)

A251271 Number of (4+1) X (n+1) 0..1 arrays with no 2 X 2 subblock having x11-x00 less than x10-x01.

Original entry on oeis.org

337, 2058, 9109, 32636, 100843, 279718, 715685, 1722176, 3954037, 8757506, 18871133, 39828260, 82762159, 170015870, 346360653, 701430696, 1414589161, 2844655514, 5709353797, 11444200908, 22920272755, 45879723734, 91806810133
Offset: 1

Views

Author

R. H. Hardin, Dec 01 2014

Keywords

Examples

			Some solutions for n=4:
..0..0..0..0..0....0..1..0..0..0....0..0..0..0..0....1..0..1..0..1
..0..0..0..0..1....0..0..1..1..1....1..1..1..1..1....0..1..0..1..1
..0..0..0..1..1....0..0..0..1..1....0..1..1..1..1....0..0..1..1..1
..0..1..1..0..0....0..0..0..1..1....0..0..0..1..1....1..1..0..0..0
..0..0..0..1..1....0..1..1..0..0....0..1..1..0..0....0..0..1..1..1
		

Crossrefs

Row 4 of A251268.

Formula

Empirical: a(n) = 11*a(n-1) - 54*a(n-2) + 156*a(n-3) - 294*a(n-4) + 378*a(n-5) - 336*a(n-6) + 204*a(n-7) - 81*a(n-8) + 19*a(n-9) - 2*a(n-10).
Conjectures from Colin Barker, Nov 27 2018: (Start)
G.f.: x*(337 - 1649*x + 4669*x^2 - 9003*x^3 + 11763*x^4 - 10549*x^5 + 6447*x^6 - 2573*x^7 + 606*x^8 - 64*x^9) / ((1 - x)^9*(1 - 2*x)).
a(n) = (20160*(1369*2^n-1365) - 18907464*n - 6363848*n^2 - 1352064*n^3 - 190036*n^4 - 16401*n^5 - 637*n^6 + 9*n^7 + n^8) / 2520.
(End)

A251272 Number of (5+1)X(n+1) 0..1 arrays with no 2X2 subblock having x11-x00 less than x10-x01.

Original entry on oeis.org

1049, 8812, 49872, 217634, 790734, 2510004, 7189937, 19018266, 47251067, 111715980, 253943272, 559554564, 1203154060, 2538190856, 5276700889, 10848708252, 22120797741, 44832823100, 90470607368, 182010260670
Offset: 1

Views

Author

R. H. Hardin, Dec 01 2014

Keywords

Comments

Row 5 of A251268

Examples

			Some solutions for n=3
..0..0..1..1....1..1..0..0....0..0..0..1....1..1..1..1....1..0..1..0
..0..0..0..1....0..0..1..1....0..0..1..1....0..0..1..1....0..1..0..1
..0..0..0..1....0..0..0..0....0..1..1..1....0..1..1..1....0..0..1..1
..1..1..1..1....0..0..0..0....1..0..0..0....0..1..1..1....0..0..0..1
..0..0..0..0....0..0..1..1....0..1..1..1....1..1..1..1....0..0..1..1
..0..0..1..1....0..0..0..1....0..1..1..1....0..0..1..1....0..1..1..1
		

Formula

Empirical: a(n) = 13*a(n-1) -77*a(n-2) +275*a(n-3) -660*a(n-4) +1122*a(n-5) -1386*a(n-6) +1254*a(n-7) -825*a(n-8) +385*a(n-9) -121*a(n-10) +23*a(n-11) -2*a(n-12)
Showing 1-10 of 13 results. Next