This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A251366 #21 Aug 20 2022 10:49:14 %S A251366 79,695,6113,53769,472943,4159927,36590017,321839625,2830847119, %T A251366 24899654327,219013164449,1926402895881,16944315318191, %U A251366 149039342816695,1310924949760897,11530674997804041,101421874630758607 %N A251366 Number of (n+1) X (1+1) 0..2 arrays with every 2 X 2 subblock summing to 1 2 3 4 5 6 or 7. %C A251366 Column 1 of A251373. %H A251366 R. H. Hardin, <a href="/A251366/b251366.txt">Table of n, a(n) for n = 1..210</a> %H A251366 Robert Israel, <a href="/A251366/a251366.pdf">Maple-assisted proof of formula</a> %H A251366 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (8,7). %F A251366 Empirical: a(n) = 8*a(n-1) + 7*a(n-2). %F A251366 Empirical g.f.: x*(79 + 63*x) / (1 - 8*x - 7*x^2). - _Colin Barker_, Mar 19 2018 %F A251366 Empirical formula verified: see link. %F A251366 a(n) = A254598(n+1). - _Robert Israel_, Mar 19 2018 %e A251366 Some solutions for n=4: %e A251366 1 1 0 1 1 2 2 1 1 2 2 1 0 0 2 1 1 0 0 2 %e A251366 2 2 0 2 1 0 0 1 2 0 2 2 0 1 2 2 0 0 0 1 %e A251366 2 1 1 1 0 1 1 2 2 2 1 1 2 0 2 1 1 2 0 2 %e A251366 2 1 2 0 1 2 1 0 1 0 1 2 1 1 2 1 0 2 2 2 %e A251366 0 1 1 0 0 0 1 1 1 1 0 0 1 0 1 1 0 1 0 2 %p A251366 f:= gfun:-rectoproc({a(n) = 8*a(n-1) + 7*a(n-2), a(1)= %p A251366 79, a(2)=695},a(n),remember): %p A251366 map(f, [$1..40]); # _Robert Israel_, Mar 19 2018 %t A251366 LinearRecurrence[{8, 7}, {79, 695}, 40] (* _Jean-François Alcover_, Aug 19 2022 *) %Y A251366 Cf. A251373, A254598. %K A251366 nonn,easy %O A251366 1,1 %A A251366 _R. H. Hardin_, Dec 01 2014