This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A251411 #26 Jan 29 2025 13:09:26 %S A251411 1,2,3,4,12,50,86 %N A251411 Numbers k such that A098550(k) = k. %C A251411 There is a strong conjecture that there are no further terms. See the discussion in the comments in A098550. %D A251411 L. Edson Jeffery, Posting to Sequence Fans Mailing List, Nov 30 2014. %H A251411 Hans Havermann, <a href="http://chesswanks.com/num/a098550loops&chains.txt">Loops and unresolved chains for map n -> A098550(n) trajectories</a> %H A251411 David L. Applegate, Hans Havermann, Bob Selcoe, Vladimir Shevelev, N. J. A. Sloane, and Reinhard Zumkeller, <a href="http://arxiv.org/abs/1501.01669">The Yellowstone Permutation</a>, arXiv preprint arXiv:1501.01669, 2015 and <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Sloane/sloane9.html">J. Int. Seq. 18 (2015) 15.6.7</a>. %t A251411 max = 100; %t A251411 f[lst_] := Block[{k = 4}, While[GCD[lst[[-2]], k] == 1 || GCD[lst[[-1]], k] > 1 || MemberQ[lst, k], k++]; Append[lst, k]]; %t A251411 A098550 = Nest[f, {1, 2, 3}, max - 3]; %t A251411 Select[Transpose[{Range[max], A098550}], #[[1]] == #[[2]]&][[All, 1]] (* _Jean-François Alcover_, Sep 05 2018, after _Robert G. Wilson v_ in A098550 *) %o A251411 (Python) %o A251411 from math import gcd %o A251411 A251411_list, l1, l2, s, b = [1,2,3], 3, 2, 4, {} %o A251411 for n in range(4,10**4): %o A251411 i = s %o A251411 while True: %o A251411 if not i in b and gcd(i,l1) == 1 and gcd(i,l2) > 1: %o A251411 l2, l1, b[i] = l1, i, 1 %o A251411 while s in b: %o A251411 b.pop(s) %o A251411 s += 1 %o A251411 if i == n: %o A251411 A251411_list.append(n) %o A251411 break %o A251411 i += 1 # _Chai Wah Wu_, Dec 03 2014 %Y A251411 Cf. A098550, A251412, A251556. %K A251411 nonn,more %O A251411 1,2 %A A251411 _N. J. A. Sloane_, Dec 02 2014