This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A251415 #19 Jan 26 2025 09:05:19 %S A251415 1,9,15,25,35,329,581,679,3443,5753,6941,9229,10417,11561,14963,30043, %T A251415 45071,120107,135187,150137,255221,1786819,2552567,2807737,3063077, %U A251415 4849921,14549573,33948953,38798741,43648643,63048061,72747599,82447327,87297191,111546389 %N A251415 Values of A098550 where A098550(k)/k reaches a record high. %C A251415 The prime factorizations of these numbers are 1, 3^2, 3*5, 5^2, 5*7, 7*47, 7*83, 7*97, 11*313, 11*523, 11*631, 11*839, 11*947, 11*1051, 13*1151, 13*2311, 13*3467, 13*9239, 13*10399, 13*11549, 17*15013, 17*105107, ... It would be nice to know what this is trying to tell us! %o A251415 (Python) %o A251415 from math import gcd %o A251415 A251415_list, l1, l2, s, u, l, b = [1], 3, 2, 4, 1, 1, {} %o A251415 for n in range(4,10**4): %o A251415 i = s %o A251415 while True: %o A251415 if not i in b and gcd(i,l1) == 1 and gcd(i,l2) > 1: %o A251415 l2, l1, b[i] = l1, i, 1 %o A251415 while s in b: %o A251415 b.pop(s) %o A251415 s += 1 %o A251415 if u*n < i*l: %o A251415 A251415_list.append(i) %o A251415 u, l = i, n %o A251415 break %o A251415 i += 1 # _Chai Wah Wu_, Dec 06 2014 %Y A251415 Cf. A098550, A241416, A250127. %K A251415 nonn %O A251415 1,2 %A A251415 _N. J. A. Sloane_, Dec 02 2014 %E A251415 a(23)-a(26) added and typo in definition corrected by _Chai Wah Wu_, Dec 06 2014 %E A251415 a(27)-a(34) from _David Applegate_, Dec 18 2014 %E A251415 a(35) from _Jinyuan Wang_, Jan 26 2025