A251420 Decimal expansion of Fisher's percolation exponent in two dimensions, 187/91.
2, 0, 5, 4, 9, 4, 5, 0, 5, 4, 9, 4, 5, 0, 5, 4, 9, 4, 5, 0, 5, 4, 9, 4, 5, 0, 5, 4, 9, 4, 5, 0, 5, 4, 9, 4, 5, 0, 5, 4, 9, 4, 5, 0, 5, 4, 9, 4, 5, 0, 5, 4, 9, 4, 5, 0, 5, 4, 9, 4, 5, 0, 5, 4, 9, 4, 5, 0, 5, 4, 9, 4, 5, 0, 5, 4, 9, 4, 5, 0, 5, 4, 9, 4, 5
Offset: 1
Examples
2.0549450549450549450549450549450549450549450549450549450549... = 2 + 10*A021186.
References
- D. Stauffer and A. Aharony, Introduction To Percolation Theory, Taylor & Francis, 1994.
Links
- Michael E. Fisher, Critical probabilities for cluster size and percolation problems, Journal of Mathematical Physics 2.4 (1961): 620-627.
- Naeem Jan, Large lattice random site percolation, Physica A: Statistical Mechanics and its Applications, Volume 266, Issues 1-4, 15 April 1999, Pages 72-75.
- V. Rodriguez, Y. Diao and J. Arsuaga, Percolation phenomena in disordered topological networks, in 24th IUPAP Conference on Computational Physics (IUPAP-CCP 2012), Journal of Physics: Conference Series 454 (2013) 012070.
- Robert M. Ziff, Correction-to-scaling exponent for two-dimensional percolation, arXiv:1101.0807 [cond-mat.dis-nn], 2011.
Programs
-
Mathematica
RealDigits[187/91, 10, 111][[1]] (* Robert G. Wilson v, Dec 16 2015 *)
-
PARI
187/91. \\ Altug Alkan, Dec 16 2015