This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A251428 #10 Jul 23 2025 13:20:20 %S A251428 2,9,12,16,41,12,29,116,97,40,42,237,380,341,56,61,432,1113,1888,1003, %T A251428 144,80,725,2532,6589,7458,3129,240,105,1128,5097,18952,34893,31980, %U A251428 9439,544,130,1641,9120,44465,122452,183341,127566,28717,992,161,2316,15449 %N A251428 T(n,k)=Number of length n+2 0..k arrays with the sum of the maximum minus twice the median plus the minimum of adjacent triples multiplied by some arrangement of +-1 equal to zero. %C A251428 Table starts %C A251428 ....2......9......16........29.........42.........61..........80..........105 %C A251428 ...12.....41.....116.......237........432........725........1128.........1641 %C A251428 ...12.....97.....380......1113.......2532.......5097........9120........15449 %C A251428 ...40....341....1888......6589......18952......44465.......94452.......180625 %C A251428 ...56...1003....7458.....34893.....122452.....349257......863840......1913597 %C A251428 ..144...3129...31980....183341.....791668....2647405.....7658288.....19250197 %C A251428 ..240...9439..127566....938895....4868362...19285211....64105154....183394583 %C A251428 ..544..28717..520568...4771117...29782800..137949185...526064608...1698285517 %C A251428 ..992..86695.2080650..24063611..179832500..976032575..4251906158..15488167451 %C A251428 .2112.261789.8370976.120999825.1084104408.6871688649.34199112972.140282803741 %H A251428 R. H. Hardin, <a href="/A251428/b251428.txt">Table of n, a(n) for n = 1..202</a> %F A251428 Empirical for column k: %F A251428 k=1: a(n) = 2*a(n-1) +2*a(n-2) -4*a(n-3) %F A251428 k=2: [order 14] %F A251428 k=3: [order 29] %F A251428 Empirical for row n: %F A251428 n=1: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4); also a polynomial of degree 2 plus a quasipolynomial of degree 0 with period 2 %F A251428 n=2: a(n) = a(n-1) +2*a(n-3) -a(n-4) -a(n-5) -a(n-6) -a(n-7) +2*a(n-8) +a(n-10) -a(n-11); also a polynomial of degree 3 plus a quasipolynomial of degree 1 with period 12 %F A251428 n=3: [order 38] %e A251428 Some solutions for n=5 k=4 %e A251428 ..3....3....1....0....3....1....4....3....3....1....3....1....0....4....0....3 %e A251428 ..2....1....4....4....1....0....4....0....0....0....1....0....2....2....1....2 %e A251428 ..3....2....1....4....1....0....1....3....1....4....2....3....4....1....3....3 %e A251428 ..0....3....0....0....0....4....2....2....3....3....1....1....0....3....1....3 %e A251428 ..4....1....3....1....3....3....4....3....3....0....3....3....2....4....3....1 %e A251428 ..0....3....4....3....0....1....4....4....0....3....2....4....0....1....1....3 %e A251428 ..3....3....0....0....3....1....1....4....0....0....2....4....2....2....4....3 %Y A251428 Row 1 is A248434 %K A251428 nonn,tabl %O A251428 1,1 %A A251428 _R. H. Hardin_, Dec 02 2014