This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A251555 #31 Jan 26 2025 09:11:58 %S A251555 1,3,2,9,4,15,8,5,6,25,12,35,16,7,10,21,20,27,14,33,26,11,13,22,39,28, %T A251555 45,32,51,38,17,18,85,24,55,34,65,36,91,30,49,40,63,44,57,46,19,23,76, %U A251555 69,50,81,52,75,56,87,62,29,31,58,93,64,99,68,77,48,119,54 %N A251555 a(1)=1, a(2)=3, a(3)=2; thereafter a(n) is the smallest number not occurring earlier having at least one common factor with a(n-2), but none with a(n-1). %C A251555 A variant of A098550. See that entry for much more information. %C A251555 It seems likely that this sequence will never merge with A098550, but it would be nice to have a proof. %C A251555 A252912 gives numbers m, such that a(m) = A098550(m), see also A252939 and A252940. - _Reinhard Zumkeller_, Dec 25 2014 %H A251555 Chai Wah Wu, <a href="/A251555/b251555.txt">Table of n, a(n) for n = 1..10000</a> %H A251555 David L. Applegate, Hans Havermann, Bob Selcoe, Vladimir Shevelev, N. J. A. Sloane, and Reinhard Zumkeller, <a href="http://arxiv.org/abs/1501.01669">The Yellowstone Permutation</a>, arXiv preprint arXiv:1501.01669 [math.NT], 2015 and <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Sloane/sloane9.html">J. Int. Seq. 18 (2015) 15.6.7</a>. %t A251555 a[1]=1; a[2]=3; a[3]=2; %t A251555 A251555 = Array[a, 3]; %t A251555 a[n_] := a[n] = For[k=2, True, k++, If[FreeQ[A251555, k], If[!CoprimeQ[k, a[n-2]] && CoprimeQ[k, a[n-1]], AppendTo[A251555, k]; Return[k]]]]; %t A251555 A251555 = Array[a, 100] (* _Jean-François Alcover_, Aug 02 2018 *) %o A251555 (Python) %o A251555 from math import gcd %o A251555 A251555_list, l1, l2, s, b = [1,3,2], 2, 3, 4, set() %o A251555 for _ in range(10**3): %o A251555 i = s %o A251555 while True: %o A251555 if not i in b and gcd(i,l1) == 1 and gcd(i,l2) > 1: %o A251555 A251555_list.append(i) %o A251555 l2, l1 = l1, i %o A251555 b.add(i) %o A251555 while s in b: %o A251555 b.remove(s) %o A251555 s += 1 %o A251555 break %o A251555 i += 1 %o A251555 print(A251555_list) # _Chai Wah Wu_, Dec 21 2014 %o A251555 (Haskell) %o A251555 import Data.List (delete) %o A251555 a251555 n = a251555_list !! (n-1) %o A251555 a251555_list = 1 : 3 : 2 : f 3 2 [4..] where %o A251555 f u v ws = g ws where %o A251555 g (x:xs) = if gcd x u > 1 && gcd x v == 1 %o A251555 then x : f v x (delete x ws) else g xs %o A251555 -- _Reinhard Zumkeller_, Dec 24 2014 %Y A251555 Cf. A098550, A251554, A252912, A252939, A252940. %K A251555 nonn %O A251555 1,2 %A A251555 _N. J. A. Sloane_, Dec 21 2014