This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A251569 #13 Feb 16 2015 04:10:36 %S A251569 1,1,3,25,385,8661,255211,9280573,401106945,20075281705,1141518933811, %T A251569 72671265032961,5119905952974913,395447744211899965, %U A251569 33224120086567957275,3016468531370564888101,294296638636407727046401,30704676897459478866984273,3411268107193733242307499235 %N A251569 E.g.f.: exp(x*G(x)) where G(x) = 1 + x*G(x)^3 is the g.f. of A001764. %C A251569 It appears that a(n) - 1 is divisible by n*(n - 1) for n >= 2. Cf. A251568. - _Peter Bala_, Feb 15 2015 %F A251569 a(n) = Sum_{k=0..n} n!/k! * binomial(3*n-2*k-1, n-k) * k/(2*n-k) for n>0 with a(0)=1. %F A251569 Recurrence: 2*(2*n-1)*(54*n^2 - 171*n + 116)*a(n) = (1458*n^4 - 7533*n^3 + 12474*n^2 - 6624*n - 7)*a(n-1) - (324*n^3 - 1080*n^2 + 759*n + 95)*a(n-2) + 8*(n-2)*(54*n^2 - 63*n - 1)*a(n-3). - _Vaclav Kotesovec_, Feb 15 2015 %e A251569 E.g.f.: A(x) = 1 + x + 3*x^2/2! + 25*x^3/3! + 385*x^4/4! + 8661*x^5/5! +... %e A251569 such that A(x) = exp(x*G(x)) where G(x) = 1 + x*G(x)^3: %e A251569 G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +... %t A251569 Flatten[{1,Table[Sum[n!/k! * Binomial[3*n-2*k-1, n-k] * k/(2*n-k),{k,0,n}],{n,1,20}]}] (* _Vaclav Kotesovec_, Feb 15 2015 *) %o A251569 (PARI) {a(n)=local(G=1);for(i=1,n,G=1+x*G^3 +x*O(x^n));n!*polcoeff(exp(x*G),n)} %o A251569 for(n=0,20,print1(a(n),", ")) %o A251569 (PARI) {a(n) = if(n==0,1,sum(k=1,n, n!/k! * binomial(3*n-2*k-1, n-k) * k/(2*n-k) ))} %o A251569 for(n=0,20,print1(a(n),", ")) %Y A251569 Cf. A001764, A251568. %K A251569 nonn %O A251569 0,3 %A A251569 _Paul D. Hanna_, Dec 05 2014