This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A251576 #14 Jun 04 2025 12:20:55 %S A251576 1,1,6,96,2736,115056,6455376,454666176,38610711936,3842344221696, %T A251576 438721154343936,56549927146392576,8123473514799876096, %U A251576 1287034084022760677376,222964032114987212998656,41930788886197036399190016,8507629742037888427727486976,1852490637585980898960109142016 %N A251576 E.g.f.: exp(6*x*G(x)^5) / G(x)^5 where G(x) = 1 + x*G(x)^6 is the g.f. of A002295. %F A251576 Let G(x) = 1 + x*G(x)^6 be the g.f. of A002295, then the e.g.f. A(x) of this sequence satisfies: %F A251576 (1) A'(x)/A(x) = G(x)^5. %F A251576 (2) A'(x) = exp(6*x*G(x)^5). %F A251576 (3) A(x) = exp( Integral G(x)^5 dx ). %F A251576 (4) A(x) = exp( Sum_{n>=1} A130564(n)*x^n/n ), where A130564(n) = binomial(6*n-2,n)/(5*n-1). %F A251576 (5) A(x) = F(x/A(x)) where F(x) is the e.g.f. of A251586. %F A251576 (6) A(x) = Sum_{n>=0} A251586(n)*(x/A(x))^n/n! and %F A251576 (7) [x^n/n!] A(x)^(n+1) = (n+1)*A251586(n), %F A251576 where A251586(n) = 6^(n-4) * (n+1)^(n-6) * (125*n^4 + 810*n^3 + 2095*n^2 + 2586*n + 1296). %F A251576 a(n) = Sum_{k=0..n} 6^k * n!/k! * binomial(6*n-k-6, n-k) * (k-1)/(n-1) for n>1. %F A251576 Recurrence: 5*(5*n-9)*(5*n-8)*(5*n-7)*(5*n-6)*(9*n^4 - 99*n^3 + 413*n^2 - 777*n + 559)*a(n) = 72*(5832*n^9 - 113724*n^8 + 986580*n^7 - 5003586*n^6 + 16373448*n^5 - 35916483*n^4 + 52931854*n^3 - 50678109*n^2 + 28701206*n - 7357350)*a(n-1) + 46656*(9*n^4 - 63*n^3 + 170*n^2 - 212*n + 105)*a(n-2). - _Vaclav Kotesovec_, Dec 07 2014 %F A251576 a(n) ~ 6^(6*(n-1)-1/2) / 5^(5*(n-1)-1/2) * n^(n-2) / exp(n-1). - _Vaclav Kotesovec_, Dec 07 2014 %e A251576 E.g.f.: A(x) = 1 + x + 6*x^2/2! + 96*x^3/3! + 2736*x^4/4! + 115056*x^5/5! +... %e A251576 such that A(x) = exp(6*x*G(x)^5) / G(x)^5 %e A251576 where G(x) = 1 + x*G(x)^6 is the g.f. of A002295: %e A251576 G(x) = 1 + x + 6*x^2 + 51*x^3 + 506*x^4 + 5481*x^5 + 62832*x^6 +... %e A251576 Note that %e A251576 A'(x) = exp(6*x*G(x)^5) = 1 + 6*x + 96*x^2/2! + 2736*x^3/3! +... %e A251576 LOGARITHMIC DERIVATIVE. %e A251576 The logarithm of the e.g.f. begins: %e A251576 log(A(x)) = x + 5*x^2/2 + 40*x^3/3 + 385*x^4/4 + 4095*x^5/5 + 46376*x^6/6 +... %e A251576 and so A'(x)/A(x) = G(x)^5. %e A251576 TABLE OF POWERS OF E.G.F. %e A251576 Form a table of coefficients of x^k/k! in A(x)^n as follows. %e A251576 n=1: [1, 1, 6, 96, 2736, 115056, 6455376, 454666176, ...]; %e A251576 n=2: [1, 2, 14, 228, 6456, 268992, 14968224, 1047087648, ...]; %e A251576 n=3: [1, 3, 24, 402, 11376, 470808, 26011584, 1808151552, ...]; %e A251576 n=4: [1, 4, 36, 624, 17736, 730944, 40143456, 2774490624, ...]; %e A251576 n=5: [1, 5, 50, 900, 25800, 1061400, 58017600, 3989340000, ...]; %e A251576 n=6: [1, 6, 66, 1236, 35856, 1475856, 80395056, 5503484736, ...]; %e A251576 n=7: [1, 7, 84, 1638, 48216, 1989792, 108156384, 7376303088, ...]; %e A251576 n=8: [1, 8, 104, 2112, 63216, 2620608, 142314624, 9676910592, ...]; ... %e A251576 in which the main diagonal begins (see A251586): %e A251576 [1, 2, 24, 624, 25800, 1475856, 108156384, 9676910592, ...] %e A251576 and is given by the formula: %e A251576 [x^n/n!] A(x)^(n+1) = 6^(n-4) * (n+1)^(n-5) * (125*n^4 + 810*n^3 + 2095*n^2 + 2586*n + 1296) for n>=0. %t A251576 Flatten[{1,1,Table[Sum[6^k * n!/k! * Binomial[6*n-k-6, n-k] * (k-1)/(n-1),{k,0,n}],{n,2,20}]}] (* _Vaclav Kotesovec_, Dec 07 2014 *) %o A251576 (PARI) {a(n) = local(G=1);for(i=1,n,G=1+x*G^6 +x*O(x^n)); n!*polcoeff(exp(6*x*G^5)/G^5, n)} %o A251576 for(n=0, 20, print1(a(n), ", ")) %o A251576 (PARI) {a(n) = if(n==0||n==1, 1, sum(k=0, n, 6^k * n!/k! * binomial(6*n-k-6,n-k) * (k-1)/(n-1) ))} %o A251576 for(n=0, 20, print1(a(n), ", ")) %Y A251576 Cf. A251586, A251666, A130564, A002295. %Y A251576 Cf. Variants: A243953, A251573, A251574, A251575, A251577, A251578, A251579, A251580. %K A251576 nonn %O A251576 0,3 %A A251576 _Paul D. Hanna_, Dec 06 2014