This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A251595 #8 Apr 30 2024 23:08:44 %S A251595 2,3,4,5,6,7,10,11,13,17,18,19,23,29,31,37,41,43,47,53,59,61,67,71,73, %T A251595 79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167, %U A251595 173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257 %N A251595 Distinct terms in A251416. %C A251595 A251417(n) gives number of repetitions of a(n) in A251416; %C A251595 a(n) = prime(n-4) for n > 11 according to Bradley Klee's conjecture, empirically confirmed for the first 10000 primes; %C A251595 equivalently: A098551(a(n)) = A251239(n-4) for n > 11. %H A251595 Reinhard Zumkeller, <a href="/A251595/b251595.txt">Table of n, a(n) for n = 1..10000</a> %e A251595 . n | a(n) | A151417(n) | A098551(a(n)) %e A251595 . ----+--------------+------------+-------------- %e A251595 . 1 | 2 | 1 | 2 %e A251595 . 2 | 3 | 1 | 3 %e A251595 . 3 | 4 = 2*2 | 1 | 4 %e A251595 . 4 | 5 | 5 | 9 %e A251595 . 5 | 6 = 2*3 | 1 | 10 %e A251595 . 6 | 7 | 5 | 15 %e A251595 . 7 | 10 = 2*5 | 1 | 16 %e A251595 . 8 | 11 | 6 | 22 %e A251595 . 9 | 13 | 1 | 23 %e A251595 . 10 | 17 | 7 | 30 %e A251595 . 11 | 18 = 2*3*3 | 1 | 31 %e A251595 . 12 | 19 | 12 | 43 %e A251595 . 13 | 23 | 8 | 51 %e A251595 . 14 | 29 | 10 | 61 %e A251595 . 15 | 31 | 1 | 62 %e A251595 . 16 | 37 | 17 | 79 %e A251595 . 17 | 41 | 8 | 87 %e A251595 . 18 | 43 | 1 | 88 %e A251595 . 19 | 47 | 13 | 101 %e A251595 . 20 | 53 | 13 | 114 %e A251595 . 21 | 59 | 13 | 127 %e A251595 . 22 | 61 | 5 | 132 %e A251595 . 23 | 67 | 10 | 142 %e A251595 . 24 | 71 | 11 | 153 %e A251595 . 25 | 73 | 5 | 158 %e A251595 The last column gives the position of a(n) in A098550. %o A251595 (Haskell) %o A251595 import Data.List (group) %o A251595 a251595 n = a251595_list !! (n-1) %o A251595 a251595_list = map head $ group a251416_list %Y A251595 Cf. A098550, A098551, A251416, A251417, A251239. %K A251595 nonn %O A251595 1,1 %A A251595 _Reinhard Zumkeller_, Dec 05 2014