cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A251595 Distinct terms in A251416.

This page as a plain text file.
%I A251595 #8 Apr 30 2024 23:08:44
%S A251595 2,3,4,5,6,7,10,11,13,17,18,19,23,29,31,37,41,43,47,53,59,61,67,71,73,
%T A251595 79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,
%U A251595 173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257
%N A251595 Distinct terms in A251416.
%C A251595 A251417(n) gives number of repetitions of a(n) in A251416;
%C A251595 a(n) = prime(n-4) for n > 11 according to Bradley Klee's conjecture, empirically confirmed for the first 10000 primes;
%C A251595 equivalently: A098551(a(n)) = A251239(n-4) for n > 11.
%H A251595 Reinhard Zumkeller, <a href="/A251595/b251595.txt">Table of n, a(n) for n = 1..10000</a>
%e A251595 .   n |     a(n)     | A151417(n) | A098551(a(n))
%e A251595 . ----+--------------+------------+--------------
%e A251595 .   1 |    2         |          1 |             2
%e A251595 .   2 |    3         |          1 |             3
%e A251595 .   3 |    4 = 2*2   |          1 |             4
%e A251595 .   4 |    5         |          5 |             9
%e A251595 .   5 |    6 = 2*3   |          1 |            10
%e A251595 .   6 |    7         |          5 |            15
%e A251595 .   7 |   10 = 2*5   |          1 |            16
%e A251595 .   8 |   11         |          6 |            22
%e A251595 .   9 |   13         |          1 |            23
%e A251595 .  10 |   17         |          7 |            30
%e A251595 .  11 |   18 = 2*3*3 |          1 |            31
%e A251595 .  12 |   19         |         12 |            43
%e A251595 .  13 |   23         |          8 |            51
%e A251595 .  14 |   29         |         10 |            61
%e A251595 .  15 |   31         |          1 |            62
%e A251595 .  16 |   37         |         17 |            79
%e A251595 .  17 |   41         |          8 |            87
%e A251595 .  18 |   43         |          1 |            88
%e A251595 .  19 |   47         |         13 |           101
%e A251595 .  20 |   53         |         13 |           114
%e A251595 .  21 |   59         |         13 |           127
%e A251595 .  22 |   61         |          5 |           132
%e A251595 .  23 |   67         |         10 |           142
%e A251595 .  24 |   71         |         11 |           153
%e A251595 .  25 |   73         |          5 |           158
%e A251595 The last column gives the position of a(n) in A098550.
%o A251595 (Haskell)
%o A251595 import Data.List (group)
%o A251595 a251595 n = a251595_list !! (n-1)
%o A251595 a251595_list = map head $ group a251416_list
%Y A251595 Cf. A098550, A098551, A251416, A251417, A251239.
%K A251595 nonn
%O A251595 1,1
%A A251595 _Reinhard Zumkeller_, Dec 05 2014