cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A251599 Centers of rows of the triangular array formed by the natural numbers.

This page as a plain text file.
%I A251599 #49 Aug 12 2018 13:21:51
%S A251599 1,2,3,5,8,9,13,18,19,25,32,33,41,50,51,61,72,73,85,98,99,113,128,129,
%T A251599 145,162,163,181,200,201,221,242,243,265,288,289,313,338,339,365,392,
%U A251599 393,421,450,451,481,512,513,545,578,579,613,648,649,685,722,723
%N A251599 Centers of rows of the triangular array formed by the natural numbers.
%C A251599 Forms a cascade of 3-number triangles down the center of the triangle array. Related to A000124 (left/west bank of same triangular array), A000217 (right/east bank) and A001844 (center column).
%C A251599 Sums of the mentioned cascading triangles: a(3*n-2) + a(3*n-1) + a(3*n) = A058331(n) + A001105(n) + A001844(n-1) = 2*A056106(n) = 2*(3*n^2-n+1). - _Reinhard Zumkeller_, Dec 13 2014
%C A251599 Union of A080827 and A000982. - _David James Sycamore_, Aug 09 2018
%H A251599 Reinhard Zumkeller, <a href="/A251599/b251599.txt">Table of n, a(n) for n = 1..10000</a>
%H A251599 David James Sycamore, <a href="/A251599/a251599.jpg">A080827 & A000982</a>
%H A251599 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,2,-2,0,-1,1).
%F A251599 Terms for n=1 (mod 3): 2m^2+2m+1, for n=2 (mod 3): 2m^2+4m+2, for n=0 (mod 3): 2m^2+4m+3, where m = floor((n-1)/3).
%F A251599 G.f.: -x*(x^2+1)*(x^4-x^3+x+1)/((x^2+x+1)^2*(x-1)^3). - _Alois P. Heinz_, Dec 10 2014
%e A251599 First ten terms (1,2,3,5,8,9,13,18,19,25) may be read down the center of the triangular formation:
%e A251599                1
%e A251599              2   3
%e A251599            4   5   6
%e A251599          7   8   9  10
%e A251599       11  12  13  14  15
%e A251599     16  17  18  19  20  21
%e A251599   22  23  24  25  26  27  28
%p A251599 a:= n-> (m-> 2*(m+1)^2-[2*m+1, 0, -1][1+r])(iquo(n-1, 3, 'r')):
%p A251599 seq(a(n), n=1..100);  # _Alois P. Heinz_, Dec 10 2014
%t A251599 LinearRecurrence[{1, 0, 2, -2, 0, -1, 1}, {1, 2, 3, 5, 8, 9, 13}, 60] (* _Jean-François Alcover_, Jan 09 2016 *)
%o A251599 (Haskell)
%o A251599 a251599 n = a251599_list !! (n-1)
%o A251599 a251599_list = f 0 $ g 1 [1..] where
%o A251599    f i (us:vs:wss) = [head $ drop i us] ++ (take 2 $ drop i vs) ++
%o A251599                      f (i + 1) wss
%o A251599    g k zs = ys : g (k + 1) xs where (ys,xs) = splitAt k zs
%o A251599 -- _Reinhard Zumkeller_, Dec 12 2014
%o A251599 (PARI) Vec(-x*(x^2+1)*(x^4-x^3+x+1)/((x^2+x+1)^2*(x-1)^3) + O(x^80)) \\ _Michel Marcus_, Jan 09 2016
%Y A251599 Cf. A000124, A000217, A001844.
%Y A251599 Cf. A092942 (first differences).
%Y A251599 Cf. A001105, A056106, A058331.
%Y A251599 Cf. A080827, A000982.
%K A251599 nonn
%O A251599 1,2
%A A251599 _Dave Durgin_, Dec 05 2014