This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A251604 #30 Jul 31 2018 03:32:09 %S A251604 1,2,3,5,4,9,13,6,19,10,29,12,41,53,8,61,15,14,87,101,16,21,37,18,11, %T A251604 58,23,24,47,71,20,7,27,17,22,39,122,35,157,26,33,59,28,45,73,30,103, %U A251604 38,51,89,25,32,57,178,55,233,34,63,97,36,49,40,267,307,42 %N A251604 A Zumkeller-type sequence (cf. A098550): a(n) = n if n <= 3, otherwise the smallest number not occurring earlier having at least one common factor with a(n-2)+a(n-1), but none with a(n-1). %C A251604 Conjectured to be a permutation of the positive integers. %C A251604 See also A255972 for this conjecture. - _Reinhard Zumkeller_, Mar 12 2015 %H A251604 Peter J. C. Moses, <a href="/A251604/b251604.txt">Table of n, a(n) for n = 1..5000</a> %H A251604 David L. Applegate, Hans Havermann, Bob Selcoe, Vladimir Shevelev, N. J. A. Sloane, and Reinhard Zumkeller, <a href="http://arxiv.org/abs/1501.01669">The Yellowstone Permutation</a>, arXiv preprint arXiv:1501.01669 [math.NT], 2015 and <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Sloane/sloane9.html">J. Int. Seq. 18 (2015) 15.6.7</a>. %t A251604 a[n_] := a[n] = If[n <= 3, n, For[k = 1, True, k++, If[FreeQ[Array[a, n-1], k], If[!CoprimeQ[k, a[n-2]+a[n-1]] && CoprimeQ[k, a[n-1]], Return[k]]]]]; %t A251604 Array[a, 65] (* _Jean-François Alcover_, Jul 31 2018 *) %o A251604 (Haskell) %o A251604 import Data.List (delete) %o A251604 a251604 n = a251604_list !! (n-1) %o A251604 a251604_list = 1 : 2 : 3 : f 2 3 [4..] where %o A251604 f u v ws = g ws where %o A251604 g (x:xs) = if gcd x (u + v) > 1 && gcd x v == 1 %o A251604 then x : f v x (delete x ws) else g xs %o A251604 -- _Reinhard Zumkeller_, Mar 12 2015 %Y A251604 Cf. A098550. %Y A251604 Cf. A255972. %K A251604 nonn %O A251604 1,2 %A A251604 _Vladimir Shevelev_, Dec 13 2014 %E A251604 More terms from _Peter J. C. Moses_, Dec 13 2014