This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A251623 #37 May 01 2021 11:41:49 %S A251623 5,19,29,41,61,67,83,89,103,113,167,179,229,263,281,283,307,317,359, %T A251623 461,467,509,563,571,613,739,743,761,1019,1031,1051,1093,1229,1291, %U A251623 1297,1319,1409,1447,1609,1621,1667,1747,1801,1877,1979,2113,2137,2161 %N A251623 Primes p with property that the sum of the 4th powers of the successive gaps between primes <= p is a prime number. %H A251623 Abhiram R Devesh, <a href="/A251623/b251623.txt">Table of n, a(n) for n = 1..1000</a> %e A251623 a(1)=5; primes less than or equal to 5: [2, 3, 5]; 4th power of prime gaps: [1, 16]; sum of 4th power of prime gaps: 17. %e A251623 a(2)=19; primes less than or equal to 13: [2, 3, 5, 7, 11, 13, 17, 19]; 4th powers of prime gaps (see A140299): [1, 16, 16, 256, 16, 256, 16]; sum of these: 577. %t A251623 p = 2; q = 3; s = 0; lst = {}; While[p < 2500, s = s + (q - p)^4; If[ PrimeQ@ s, AppendTo[lst, q]]; p = q; q = NextPrime@ q]; lst (* _Robert G. Wilson v_, Dec 19 2014 *) %o A251623 (Python) %o A251623 import sympy %o A251623 p=2 %o A251623 s=0 %o A251623 while 10000>p>0: %o A251623 np=sympy.nextprime(p) %o A251623 if sympy.isprime(s): %o A251623 print(p) %o A251623 d=np-p %o A251623 s+=(d**4) %o A251623 p=np %o A251623 (PARI) p = 2; q = 3; s = 1; for (i = 1, 100, p = q; q = nextprime (q + 1); if (isprime (s = s + (q - p)^4), print1 (q ", "))) \\ _Zak Seidov_, Jan 19 2015 %Y A251623 Cf. A006512 (with gaps), A247177 (with squares of gaps), A247178 (with cubes of gaps). %K A251623 nonn,easy %O A251623 1,1 %A A251623 _Abhiram R Devesh_, Dec 06 2014