A251627 Circular disk sequence for the lattice of the Archimedean tiling (3,4,6,4).
1, 5, 7, 9, 13, 14, 18, 25, 29, 33, 35, 39, 43, 45, 49, 51, 55, 57, 59, 63, 69, 73, 77, 79, 83, 89, 93, 97, 99, 101, 103, 107, 109, 113, 117, 121, 123, 127, 129, 133, 134, 136, 140, 144, 146, 158, 160, 164, 165, 169, 173, 177, 181, 183, 187
Offset: 0
Examples
n=4: The radius of the disk is R(4) = sqrt(2 + sqrt(3)), approximately 1.932. The lattice points for this R(n)-disk are the origin, four points on the circle with radius R(1) = 1, two points on the circle with radius R(2) = sqrt(2), two points on the circle with radius R(3) = sqrt(3) and 4 points on the circle with radius R(4) = sqrt(2+sqrt(3)), all together 1 + 4 + 2 + 2 + 4 = 13 = a(4) lattice points. See Figure 3 of the note given in the link.
Links
- Wolfdieter Lang, On lattice point circles for the Archimedean tiling (3,4,6,4)
Comments