cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A251629 Rational parts of the Q(sqrt(2)) integers giving the squared radii of the lattice point circles for the Archimedean tiling (4,8,8).

This page as a plain text file.
%I A251629 #15 Dec 10 2015 04:13:18
%S A251629 0,1,2,2,3,4,5,6,6,7,9,9,11,10,12,12,13,14,14,15,17,18,17,18,21,22,20,
%T A251629 22,22,25,23,24,25,27,28,29,29,30,30,33,34,34,33,35,36,34,39,38,37,41,
%U A251629 39,42,41,44,42,43,44,46,46,49,48,50,49
%N A251629 Rational parts of the Q(sqrt(2)) integers giving the squared radii of the lattice point circles for the Archimedean tiling (4,8,8).
%C A251629 The irrational parts are given in A251631.
%C A251629 The points of the lattice of the Archimedean tiling (4,8,8) lie on certain circles around any point. The length of the regular octagon (8-gon) side is taken as 1 (in some length unit).
%C A251629 The squares of the radii R2(n) of these circles are integers in the real quadratic number field Q(sqrt(2)), hence R2(n) = a(n) + A251631(n)*sqrt(2). The R2 sequence is sorted in increasing order.
%C A251629 For the case of the Archimedean tiling (3,4,6,4) see A249870 and A249871, and the W. Lang link given in A249870.
%H A251629 Wolfdieter Lang, <a href="/A251629/a251629_2.pdf">On lattice point circles for the Archimedean tiling (4,8,8).</a>
%H A251629 Wikipedia, <a href="https://en.wikipedia.org/wiki/Tiling_by_regular_polygons#Archimedean.2C_uniform_or_semiregular_tilings">Archimedean tilings</a>
%e A251629 The first pairs [a(n), A251631(n)] for the squared radii are: [0,0], [1,0], [2,0], [2,1], [3,2], [4,2], [5,2] [6,3], [6,4], [7,4], [9,4], [9,6], [11,6], [10,7], [12,6], [12,8], [13,8], ...
%e A251629 The corresponding radii are (Maple 10 digits if not integer) 0, 1, 1.414213562, 1.847759065, 2.414213562, 2.613125930, 2.797932652, 3.200412581, 3.414213562, 3.557647291, 3.828427124, 4.181540551, 4.414213562, 4.460884994, 4.526066876, 4.828427124, 4.930893276, ...
%Y A251629 Cf. A251631, A251632, A251633.
%Y A251629 Cf. A249870, A249871 ((3,4,6,4) tiling).
%K A251629 nonn,easy
%O A251629 0,3
%A A251629 _Wolfdieter Lang_, Jan 02 2015