A251634 Numerators of inverse Riordan triangle of Riordan triangle A029635. Riordan (1/(1-x), x/(1+2*x)). Triangle read by rows for 0 <= m <= n.
1, 1, 1, 1, -1, 1, 1, 3, -3, 1, 1, -5, 9, -5, 1, 1, 11, -23, 19, -7, 1, 1, -21, 57, -61, 33, -9, 1, 1, 43, -135, 179, -127, 51, -11, 1, 1, -85, 313, -493, 433, -229, 73, -13, 1, 1, 171, -711, 1299, -1359, 891, -375, 99, -15, 1, 1, -341, 1593, -3309, 4017, -3141, 1641, -573, 129, -17, 1
Offset: 0
Examples
The triangle T(n,m) begins: n\m 0 1 2 3 4 5 6 7 8 9 ... 0: 1 1: 1 1 2: 1 -1 1 3: 1 3 -3 1 4: 1 -5 9 -5 1 5: 1 11 -23 19 -7 1 6: 1 -21 57 -61 33 -9 1 7: 1 43 -135 179 -127 51 -11 1 8: 1 -85 313 -493 433 -229 73 -13 1 9: 1 171 -711 1299 -1359 891 -375 99 -15 1 ... The rational Riordan triangle R(n,m) begins: n\m 0 1 2 3 4 5 ... 0: 1/2 1: 1/4 1/2 2: 1/8 -1/4 1/2 3: 1/16 3/8 -3/4 1/2 4: 1/32 -5/16 9/8 -5/4 1/2 5: 1/64 11/3 -23/1 19/8 -7/4 1/2 ... For more rows see the link.
Links
- Wolfdieter Lang, Eleven rows of the triangle, and rational triangle.
Programs
-
Maple
A251634 := proc(n, k) local S; S := proc(n, k) option remember; `if`(k = 0, 1, `if`(k > n, 0, S(n-1, k-1)/k - 2*S(n-1, k))) end: k!*S(n, k) end: seq(seq(A251634(n, k), k=0..n)), n=0..9); # Peter Luschny, Jan 19 2020
Formula
O.g.f. of the row polynomials P(n,x) = Sum_{m=0..n} R(n,m)*x^m of the rational triangle R: G(z,x) = Sum_{n>=0} P(n,x)*z^n = (1+z)/((2-z)*(1+(1-x)*z)).
O.g.f. column m of the rational triangle R: (1/(2-x))*(x/(1+x))^m, m >= 0 (Riordan property of R).
O.g.f. column m of the numerator triangle T: (1/(1-x))*(x/(1+2*x))^m, m >= 0. (Riordan property of T).
T(n, k) = k!*S(n, k) where S(n, k) is recursively defined by:
if k = 0 then 1 else if k > n then 0 else S(n-1, k-1)/k - 2*S(n-1, k). - Peter Luschny, Jan 19 2020
Comments