This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A251636 #16 Feb 28 2025 23:11:58 %S A251636 1,-1,1,-2,1,1,-4,0,3,1,-8,-4,6,5,1,-16,-16,8,16,7,1,-32,-48,0,40,30, %T A251636 9,1,-64,-128,-48,80,100,48,11,1,-128,-320,-224,112,280,196,70,13,1, %U A251636 -256,-768,-768,0,672,672,336,96,15,1,-512,-1792,-2304,-768,1344,2016,1344,528,126,17,1 %N A251636 Inverse of the Riordan array A251634: Riordan ((1-3*x)/(1-2*x), x/(1-2*x)). %C A251636 For Riordan arrays and references see the link "Sheffer a- and z-sequences", first part, in A006232. %C A251636 The row sums have o.g.f. 1, that is the sequence is 1,repeat(0,) = A000007. %C A251636 The alternating row sums have o.g.f. (1 - 3*x)/(1-x), that is the sequence is 1,repeat(-2,). %C A251636 The A-sequence of this Riordan array is 1,2,repeat(0,) leading to the recurrence for T(n, k) for n >= k >= 1 given in the formula section. The Z-sequence of this Riordan array has o.g.f. -(1 + 2*x)/(10x), that is the sequence is -1,repeat(-3,), leading to the recurrence for T(n, 0) for n >= 1 given in the formula section. For A- and Z-sequences see the above mentioned link. %H A251636 Wolfdieter Lang, <a href="/A251636/a251636.pdf">First eleven rows of the triangle.</a> %F A251636 O.g.f. for row polynomials P(n,x) = sum(T(n, k),k=0..n) is G(z,x) = (1 - 3*z)/(1 - (2 + x)*z) (Riordan property). %F A251636 O.g.f. column k: ((1 - 3*x)/(1 - 2*x))*(x/(1 - 2*x))^k, k >= 0. %F A251636 Recurrence from the A-sequence (see comment above): %F A251636 T(n, k) = T(n-1, k-1) + 2*T(n-1, k), for n >= k >= 1; T(0, 0) = 1; T(n, k) = 0 if n < k. %F A251636 Recurrence from the Z-sequence (see comment above): %F A251636 T(n, 0) = -(T(n-1, 0) + 3*Sum_{k=1..n-1} T(n-1, k)) for n >= 1; T(0, 0) = 1. %F A251636 Of course, T(0, 0) = 1 and T(n, 0) = -2^(n-1) for n >= 1. %e A251636 The triangle T(n, k) begins: %e A251636 n\k 0 1 2 3 4 5 6 7 8 9 %e A251636 O: 1 %e A251636 1: -1 1 %e A251636 2: -2 1 1 %e A251636 3: -4 0 3 1 %e A251636 4: -8 -4 6 5 1 %e A251636 5: -16 -16 8 16 7 1 %e A251636 6: -32 -48 0 40 30 9 1 %e A251636 7: -64 -128 -48 80 100 48 11 1 %e A251636 8: -128 -320 -224 112 280 196 70 13 1 %e A251636 9: -256 -768 -768 0 672 672 336 96 15 1 %e A251636 ... %e A251636 See the link for eleven rows. %e A251636 Recurrence from the A-sequence: T(3, 1) = T(2, 0) + 2*T(2, 1) = -2 + 2*1 = 0. %e A251636 Recurrence from the Z-sequence: T(3,0) = -(T(2,0) + 3*(T(2,1) + T(2,2))) = -(-2 + 3*(1 + 1)) = -4. %Y A251636 Cf. A000007, A251634. %K A251636 sign,tabl,easy %O A251636 0,4 %A A251636 _Wolfdieter Lang_, Jan 11 2015