This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A251657 #10 Mar 16 2016 16:29:18 %S A251657 1,5,49,1331,130321,52521875,90458382169,662062621900811, %T A251657 20248745068443234721,2548385124666493326171875, %U A251657 1305282261160894865367626964649,2701607566979638625212777041914285051,22497539334127167666989016452232087989410801,751859086636251929847496735809485838154930419921875 %N A251657 a(n) = (2^n + 3)^n. %C A251657 This is a special case of the more general statement: %C A251657 Sum_{n>=0} m^n * F(q^n*x)^b * log( F(q^n*x) )^n / n! = Sum_{n>=0} x^n * [y^n] F(y)^(m*q^n + b) where F(x) = exp(x), q=2, m=1, b=3. %F A251657 E.g.f.: Sum_{n>=0} 2^(n^2) * exp(3*2^n*x) * x^n/n! = Sum_{n>=0} (2^n + 3)^n * x^n/n!. %F A251657 O.g.f.: Sum_{n>=0} 2^(n^2) * x^n / (1 + 3*2^n*x)^(n+1). %F A251657 a(n) = Sum_{k=0..n} binomial(n, k) * 3^k * (2^n)^(n-k). %F A251657 a(n) = Sum_{k=0..n} A155810(k)*3^k. %e A251657 E.g.f.: A(x) = 4^0 + 5^1*x + 7^2*x^2/2! + 11^3*x^3/3! + 19^4*x^4/4! + 35^5*x^5/5! + 67^6*x^6/6! + 131^7*x^7/7! +...+ (2^n+3)^n*x^n/n! +... %e A251657 such that %e A251657 A(x) = exp(3*x) + 2*exp(3*2*x) + 2^4*exp(3*4*x)*x^2/2! + 2^9*exp(3*8*x)*x^3/3! + 2^16*exp(3*16*x)*x^4/4! +...+ 2^(n^2)*exp(3*2^n*x)*x^n/n! +... %t A251657 Table[(2^n+3)^n,{n,0,20}] (* _Harvey P. Dale_, Mar 16 2016 *) %o A251657 (PARI) {a(n,q=2,m=1,b=3) =( m*q^n + b)^n} %o A251657 for(n=0,15,print1(a(n,q=2,m=1,b=3),", ")) %o A251657 (PARI) {a(n,q=2,m=1,b=3) = sum(k=0,n, binomial(n,k) * b^k * m^(n-k) * (q^n)^(n-k))} %o A251657 for(n=0,15,print1(a(n,q=2,m=1,b=3),", ")) %o A251657 (PARI) {a(n,q=2,m=1,b=3) = n!*polcoeff(sum(k=0, n, m^k * q^(k^2) * exp(b*q^k*x +x*O(x^n)) * x^k/k!), n)} %o A251657 for(n=0,15,print1(a(n,q=2,m=1,b=3),", ")) %o A251657 (PARI) {a(n,q=2,m=1,b=3) = polcoeff(sum(k=0, n, m^k * q^(k^2) * x^k / (1 - b*q^k*x +x*O(x^n))^(k+1) ), n)} %o A251657 for(n=0,15,print1(a(n,q=2,m=1,b=3),", ")) %Y A251657 Cf. A055601, A136516, A165327, A155810. %K A251657 nonn %O A251657 0,2 %A A251657 _Paul D. Hanna_, Jan 29 2015