This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A251660 #11 Dec 22 2014 12:39:18 %S A251660 1,1,1,1,1,1,1,1,2,1,1,1,3,8,1,1,1,4,21,56,1,1,1,5,40,261,592,1,1,1,6, %T A251660 65,712,4833,8512,1,1,1,7,96,1505,18784,120303,155584,1,1,1,8,133, %U A251660 2736,51505,663424,3778029,3456896,1,1,1,9,176,4501,115056,2354725,29480896,143531433,90501632,1 %N A251660 Table of coefficients in functions R(n,x) defined by R(n,x) = exp( n*x*G(n,x)^(n-1) ) / G(n,x)^(n-1) where G(n,x) = 1 + x*G(n,x)^n, for rows n>=1. %F A251660 E.g.f. of row n, R(n,x), for n>=1, satisfies: %F A251660 (1) [x^k/k!] R(n,x)^(k+1) = n^(k-1) * (n+k) * (k+1)^(k-2) for k>=0. %F A251660 (2) R(n,x) = exp( n*x*G(n,x)^(n-1) ) / G(n,x)^(n-1), where G(n,x) = 1 + x*G(n,x)^n. %F A251660 (3) R'(n,x)/R(n,x) = G(n,x)^(n-1), where G(n,x) = 1 + x*G(n,x)^n. %F A251660 T(n,k) = Sum_{j=0..k} n^j * k!/j! * binomial(n*(k-1)-j, k-j) * (j-1)/(k-1) for k>1, n>=1. %e A251660 This table begins: %e A251660 n=1: [1, 1, 1, 1, 1, 1, 1, 1, ...]; %e A251660 n=2: [1, 1, 2, 8, 56, 592, 8512, 155584, ...]; %e A251660 n=3: [1, 1, 3, 21, 261, 4833, 120303, 3778029, ...]; %e A251660 n=4: [1, 1, 4, 40, 712, 18784, 663424, 29480896, ...]; %e A251660 n=5: [1, 1, 5, 65, 1505, 51505, 2354725, 135258625, ...]; %e A251660 n=6: [1, 1, 6, 96, 2736, 115056, 6455376, 454666176, ...]; %e A251660 n=7: [1, 1, 7, 133, 4501, 224497, 14926387, 1245099709, ...]; %e A251660 n=8: [1, 1, 8, 176, 6896, 397888, 30584128, 2948178304, ...]; %e A251660 n=9: [1, 1, 9, 225, 10017, 656289, 57255849, 6262226721, ...]; %e A251660 n=10:[1, 1, 10, 280, 13960, 1023760, 99935200, 12226859200, ...]; ... %e A251660 where e.g.f. of row n equals: exp( n*x*G(n,x)^(n-1) ) / G(n,x)^(n-1). %e A251660 Related table of coefficients in G(n,x) = 1 + x*G(n,x)^n begins: %e A251660 n=1: [1, 1, 1, 1, 1, 1, 1, 1, ...]; %e A251660 n=2: [1, 1, 2, 5, 14, 42, 132, 429, ...]; %e A251660 n=3: [1, 1, 3, 12, 55, 273, 1428, 7752, ...]; %e A251660 n=4: [1, 1, 4, 22, 140, 969, 7084, 53820, ...]; %e A251660 n=5: [1, 1, 5, 35, 285, 2530, 23751, 231880, ...]; %e A251660 n=6: [1, 1, 6, 51, 506, 5481, 62832, 749398, ...]; %e A251660 n=7: [1, 1, 7, 70, 819, 10472, 141778 , 1997688, ...]; %e A251660 n=8: [1, 1, 8, 92, 1240, 18278, 285384, 4638348, ...]; %e A251660 n=9: [1, 1, 9, 117, 1785, 29799, 527085, 9706503, ...]; %e A251660 n=10:[1, 1, 10, 145, 2470, 46060, 910252, 18730855, ...]; ... %o A251660 (PARI) {T(n,k)=local(G=1); for(i=0, k, G=1+x*G^n +x*O(x^k)); k!*polcoeff(exp(n*x*G^(n-1))/G^(n-1), k)} %o A251660 /* Print as a rectangular table */ %o A251660 for(n=1, 10, for(k=0,10, print1(T(n,k), ", "));print("")) %o A251660 /* Print as a flattened table */ %o A251660 for(n=0, 12, for(k=0,n, print1(T(n-k+1,k), ", "));) %o A251660 /* Print the Related table of functions G(n,x) = 1 + x*G(n,x)^n */ %o A251660 {R(n,k)=local(G=1); for(i=0, k, G=1+x*G^n +x*O(x^k)); polcoeff(G, k)} %o A251660 for(n=1, 10, for(k=0,10, print1(R(n,k), ", "));print("")) %o A251660 (PARI) /* Binomial sum formula for term T(n,k) */ %o A251660 {T(n,k) = if(k<=1,1,sum(j=0,k, n^j * k!/j! * binomial(n*(k-1)-j, k-j) * (j-1)/(k-1)))} %o A251660 for(n=1, 10, for(k=0, 10, print1(T(n, k), ", ")); print("")) %Y A251660 Cf. Rows: A243953, A251573, A251574, A251575, A251576, A251577, A251578, A251579, A251580. %K A251660 nonn,tabl %O A251660 1,9 %A A251660 _Paul D. Hanna_, Dec 21 2014