cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A251660 Table of coefficients in functions R(n,x) defined by R(n,x) = exp( n*x*G(n,x)^(n-1) ) / G(n,x)^(n-1) where G(n,x) = 1 + x*G(n,x)^n, for rows n>=1.

This page as a plain text file.
%I A251660 #11 Dec 22 2014 12:39:18
%S A251660 1,1,1,1,1,1,1,1,2,1,1,1,3,8,1,1,1,4,21,56,1,1,1,5,40,261,592,1,1,1,6,
%T A251660 65,712,4833,8512,1,1,1,7,96,1505,18784,120303,155584,1,1,1,8,133,
%U A251660 2736,51505,663424,3778029,3456896,1,1,1,9,176,4501,115056,2354725,29480896,143531433,90501632,1
%N A251660 Table of coefficients in functions R(n,x) defined by R(n,x) = exp( n*x*G(n,x)^(n-1) ) / G(n,x)^(n-1) where G(n,x) = 1 + x*G(n,x)^n, for rows n>=1.
%F A251660 E.g.f. of row n, R(n,x), for n>=1, satisfies:
%F A251660 (1) [x^k/k!] R(n,x)^(k+1) = n^(k-1) * (n+k) * (k+1)^(k-2) for k>=0.
%F A251660 (2) R(n,x) = exp( n*x*G(n,x)^(n-1) ) / G(n,x)^(n-1), where G(n,x) = 1 + x*G(n,x)^n.
%F A251660 (3) R'(n,x)/R(n,x) = G(n,x)^(n-1), where G(n,x) = 1 + x*G(n,x)^n.
%F A251660 T(n,k) = Sum_{j=0..k} n^j * k!/j! * binomial(n*(k-1)-j, k-j) * (j-1)/(k-1) for k>1, n>=1.
%e A251660 This table begins:
%e A251660 n=1: [1, 1,  1,   1,     1,       1,        1,           1, ...];
%e A251660 n=2: [1, 1,  2,   8,    56,     592,     8512,      155584, ...];
%e A251660 n=3: [1, 1,  3,  21,   261,    4833,   120303,     3778029, ...];
%e A251660 n=4: [1, 1,  4,  40,   712,   18784,   663424,    29480896, ...];
%e A251660 n=5: [1, 1,  5,  65,  1505,   51505,  2354725,   135258625, ...];
%e A251660 n=6: [1, 1,  6,  96,  2736,  115056,  6455376,   454666176, ...];
%e A251660 n=7: [1, 1,  7, 133,  4501,  224497, 14926387,  1245099709, ...];
%e A251660 n=8: [1, 1,  8, 176,  6896,  397888, 30584128,  2948178304, ...];
%e A251660 n=9: [1, 1,  9, 225, 10017,  656289, 57255849,  6262226721, ...];
%e A251660 n=10:[1, 1, 10, 280, 13960, 1023760, 99935200, 12226859200, ...]; ...
%e A251660 where e.g.f. of row n equals: exp( n*x*G(n,x)^(n-1) ) / G(n,x)^(n-1).
%e A251660 Related table of coefficients in G(n,x) = 1 + x*G(n,x)^n  begins:
%e A251660 n=1: [1, 1,  1,   1,    1,     1,      1,        1, ...];
%e A251660 n=2: [1, 1,  2,   5,   14,    42,    132,      429, ...];
%e A251660 n=3: [1, 1,  3,  12,   55,   273,   1428,     7752, ...];
%e A251660 n=4: [1, 1,  4,  22,  140,   969,   7084,    53820, ...];
%e A251660 n=5: [1, 1,  5,  35,  285,  2530,  23751,   231880, ...];
%e A251660 n=6: [1, 1,  6,  51,  506,  5481,  62832,   749398, ...];
%e A251660 n=7: [1, 1,  7,  70,  819, 10472, 141778 , 1997688, ...];
%e A251660 n=8: [1, 1,  8,  92, 1240, 18278, 285384,  4638348, ...];
%e A251660 n=9: [1, 1,  9, 117, 1785, 29799, 527085,  9706503, ...];
%e A251660 n=10:[1, 1, 10, 145, 2470, 46060, 910252, 18730855, ...]; ...
%o A251660 (PARI) {T(n,k)=local(G=1); for(i=0, k, G=1+x*G^n +x*O(x^k)); k!*polcoeff(exp(n*x*G^(n-1))/G^(n-1), k)}
%o A251660 /* Print as a rectangular table */
%o A251660 for(n=1, 10, for(k=0,10, print1(T(n,k), ", "));print(""))
%o A251660 /* Print as a flattened table */
%o A251660 for(n=0, 12, for(k=0,n, print1(T(n-k+1,k), ", "));)
%o A251660 /* Print the Related table of functions G(n,x) = 1 + x*G(n,x)^n */
%o A251660 {R(n,k)=local(G=1); for(i=0, k, G=1+x*G^n +x*O(x^k)); polcoeff(G, k)}
%o A251660 for(n=1, 10, for(k=0,10, print1(R(n,k), ", "));print(""))
%o A251660 (PARI) /* Binomial sum formula for term T(n,k) */
%o A251660 {T(n,k) = if(k<=1,1,sum(j=0,k, n^j * k!/j! * binomial(n*(k-1)-j, k-j) * (j-1)/(k-1)))}
%o A251660 for(n=1, 10, for(k=0, 10, print1(T(n, k), ", ")); print(""))
%Y A251660 Cf. Rows: A243953, A251573, A251574, A251575, A251576, A251577, A251578, A251579, A251580.
%K A251660 nonn,tabl
%O A251660 1,9
%A A251660 _Paul D. Hanna_, Dec 21 2014