This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A251662 #7 Jan 13 2015 20:01:43 %S A251662 1,0,2,11,54,270,1427,7740,43260,246620,1430714,8414356,50067107, %T A251662 300829144,1822766463,11124747912,68328754958,422030501802, %U A251662 2619631042664,16332922043614,102240109896265,642312449787030,4048514844039119,25594403732709300,162250238001816845,1031147983109715120 %N A251662 Dirichlet convolution of Moebius function mu(n) (A008683) with Ternary numbers A001764. %F A251662 G.f. A(x) satisfies: Sum_{n>=1} A((x - 2*x^2 + x^3)^n) = x - x^2. %F A251662 a(n) = Sum_{d|n} Moebius(n/d) * binomial(3*(d-1), d-1)/(2*d-1). %e A251662 G.f.: A(x) = x + 2*x^3 + 11*x^4 + 54*x^5 + 270*x^6 + 1427*x^7 + 7740*x^8 +... %e A251662 where Sum_{n>=1} A(x^n*(1-x)^(2*n)) = x - x^2: %e A251662 x-x^2 = A(x*(1-x)^2) + A(x^2*(1-x)^4) + A(x^3*(1-x)^6) + A(x^4*(1-x)^8) +... %o A251662 (PARI) /* Dirichlet convolution of mu(n) with Ternary numbers A001764: */ %o A251662 {a(n) = sumdiv(n, d, moebius(n/d) * binomial(3*(d-1), d-1)/(2*d-1))} %o A251662 for(n=1, 30, print1(a(n), ", ")) %o A251662 (PARI) /* G.f. satisfies: Sum_{n>=1} A(x^n*(1-x)^(2*n)) = x-x^2. */ %o A251662 {a(n)=local(A=[1, 0]); for(i=1, n, A=concat(A, 0); A[#A]=-Vec(sum(n=1, #A, subst(x*Ser(A), x, (x-2*x^2+x^3 +x*O(x^#A))^n)))[#A]); A[n]} %o A251662 for(n=1, 30, print1(a(n), ", ")) %Y A251662 Cf. A034742, A001764, A008683. %K A251662 nonn %O A251662 1,3 %A A251662 _Paul D. Hanna_, Jan 04 2015