cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A251662 Dirichlet convolution of Moebius function mu(n) (A008683) with Ternary numbers A001764.

This page as a plain text file.
%I A251662 #7 Jan 13 2015 20:01:43
%S A251662 1,0,2,11,54,270,1427,7740,43260,246620,1430714,8414356,50067107,
%T A251662 300829144,1822766463,11124747912,68328754958,422030501802,
%U A251662 2619631042664,16332922043614,102240109896265,642312449787030,4048514844039119,25594403732709300,162250238001816845,1031147983109715120
%N A251662 Dirichlet convolution of Moebius function mu(n) (A008683) with Ternary numbers A001764.
%F A251662 G.f. A(x) satisfies: Sum_{n>=1} A((x - 2*x^2 + x^3)^n) = x - x^2.
%F A251662 a(n) = Sum_{d|n} Moebius(n/d) * binomial(3*(d-1), d-1)/(2*d-1).
%e A251662 G.f.: A(x) = x + 2*x^3 + 11*x^4 + 54*x^5 + 270*x^6 + 1427*x^7 + 7740*x^8 +...
%e A251662 where Sum_{n>=1} A(x^n*(1-x)^(2*n)) = x - x^2:
%e A251662 x-x^2 = A(x*(1-x)^2) + A(x^2*(1-x)^4) + A(x^3*(1-x)^6) + A(x^4*(1-x)^8) +...
%o A251662 (PARI) /* Dirichlet convolution of mu(n) with Ternary numbers A001764: */
%o A251662 {a(n) = sumdiv(n, d, moebius(n/d) * binomial(3*(d-1), d-1)/(2*d-1))}
%o A251662 for(n=1, 30, print1(a(n), ", "))
%o A251662 (PARI) /* G.f. satisfies: Sum_{n>=1} A(x^n*(1-x)^(2*n)) = x-x^2. */
%o A251662 {a(n)=local(A=[1, 0]); for(i=1, n, A=concat(A, 0); A[#A]=-Vec(sum(n=1, #A, subst(x*Ser(A), x, (x-2*x^2+x^3 +x*O(x^#A))^n)))[#A]); A[n]}
%o A251662 for(n=1, 30, print1(a(n), ", "))
%Y A251662 Cf. A034742, A001764, A008683.
%K A251662 nonn
%O A251662 1,3
%A A251662 _Paul D. Hanna_, Jan 04 2015