This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A251663 #13 Dec 10 2014 19:34:02 %S A251663 1,2,11,120,2061,48918,1487151,55188108,2419385625,122367255498, %T A251663 7014349322739,449405251066368,31826192109186789,2468711973793223070, %U A251663 208159999898813165079,18957203713618483723092,1854424578467714146269489,193922780991931737971748882,21588348501840566333913576795 %N A251663 E.g.f.: exp( 3*x*G(x)^2 ) / G(x), where G(x) = 1 + x*G(x)^3 is the g.f. A001764. %F A251663 Let G(x) = 1 + x*G(x)^3 be the g.f. of A001764, then the e.g.f. A(x) of this sequence satisfies: %F A251663 (1) A'(x)/A(x) = G(x)^2 + G'(x)/G(x). %F A251663 (2) A(x) = F(x/A(x)^2) where F(x) is the e.g.f. of A251693. %F A251663 (3) A(x) = Sum_{n>=0} A251693(n)*(x/A(x)^2)^n/n! where A251693(n) = (n+1) * (2*n+1)^(n-2) * 3^n. %F A251663 (4) [x^n/n!] A(x)^(2*n+1) = (n+1) * (2*n+1)^(n-1) * 3^n. %F A251663 a(n) = Sum_{k=0..n} 3^k * n!/k! * binomial(3*n-k-2, n-k) * (2*k-1)/(2*n-1) for n>=0. %F A251663 Recurrence: 2*(2*n-1)*(9*n^2 - 30*n + 19)*a(n) = 3*(81*n^4 - 432*n^3 + 756*n^2 - 393*n - 88)*a(n-1) - 27*(9*n^2 - 12*n - 2)*a(n-2). - _Vaclav Kotesovec_, Dec 07 2014 %F A251663 a(n) ~ 3^(3*n-3/2) * n^(n-1) / (2^(2*n-1/2) * exp(n-1)). - _Vaclav Kotesovec_, Dec 07 2014 %e A251663 E.g.f.: A(x) = 1 + 2*x + 11*x^2/2! + 120*x^3/3! + 2061*x^4/4! + 48918*x^5/5! +... %e A251663 such that A(x) = exp(3*x*G(x)^2) / G(x) %e A251663 where G(x) = 1 + x*G(x)^3 is the g.f. of A001764: %e A251663 G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +... %e A251663 The e.g.f. satisfies: %e A251663 A(x) = 1 + 2*x/A(x)^2 + 27*x^2/(2!*A(x)^4) + 756*x^3/(3!*A(x)^6) + 32805*x^4/(4!*A(x)^8) + 1940598*x^5/(5!*A(x)^10) + 145746783*x^6/(6!*A(x)^12) + 13286025000*x^7/(7!*A(x)^14) +...+ (n+1)*(2*n+1)^(n-2)*3^n * x^n/(n!*A(x)^(2*n)) +... %t A251663 Table[Sum[3^k * n!/k! * Binomial[3*n-k-2, n-k] * (2*k-1)/(2*n-1),{k,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Dec 07 2014 *) %o A251663 (PARI) {a(n)=local(G=1); for(i=0, n, G=1+x*G^3 +x*O(x^n)); n!*polcoeff(exp(3*x*G^2)/G, n)} %o A251663 for(n=0, 20, print1(a(n), ", ")) %o A251663 (PARI) {a(n) = sum(k=0, n, 3^k * n!/k! * binomial(3*n-k-2,n-k) * (2*k-1)/(2*n-1) )} %o A251663 for(n=0, 20, print1(a(n), ", ")) %Y A251663 Cf. A251573, A251693, A001764. %Y A251663 Cf. Variants: A243953, A251664, A251665, A251666, A251667, A251668, A251669, A251670. %K A251663 nonn %O A251663 0,2 %A A251663 _Paul D. Hanna_, Dec 07 2014