This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A251665 #11 Dec 09 2014 00:38:55 %S A251665 1,4,47,1034,34349,1540480,87311275,5991370390,483100288985, %T A251665 44778459212540,4691799973171175,548418557098305250, %U A251665 70754785462138421125,9987462340422594014200,1531136319790275407365475,253347224928445454055920750,45001449932636667231257800625,8541130421294458307989700672500 %N A251665 E.g.f.: exp(5*x*G(x)^4) / G(x) where G(x) = 1 + x*G(x)^5 is the g.f. of A002294. %F A251665 Let G(x) = 1 + x*G(x)^5 be the g.f. of A002294, then the e.g.f. A(x) of this sequence satisfies: %F A251665 (1) A'(x)/A(x) = G(x)^4 + 3*G'(x)/G(x). %F A251665 (2) A(x) = F(x/A(x)^4) where F(x) is the e.g.f. of A251695. %F A251665 (3) A(x) = Sum_{n>=0} A251695(n)*(x/A(x)^4)^n/n! where A251695(n) = (3*n+1) * (4*n+1)^(n-2) * 5^n . %F A251665 (4) [x^n/n!] A(x)^(4*n+1) = (3*n+1) * (4*n+1)^(n-1) * 5^n. %F A251665 a(n) = Sum_{k=0..n} 5^k * n!/k! * binomial(5*n-k-2,n-k) * (4*k-1)/(4*n-1) for n>=0. %F A251665 Recurrence: 8*(2*n-1)*(4*n-3)*(4*n-1)*(1875*n^4 - 13375*n^3 + 35700*n^2 - 41905*n + 17681)*a(n) = 5*(1171875*n^8 - 11875000*n^7 + 51765625*n^6 - 126596875*n^5 + 189126875*n^4 - 174442875*n^3 + 93137550*n^2 - 22362645*n - 233856)*a(n-1) - 3125*(1875*n^4 - 5875*n^3 + 6825*n^2 - 3130*n - 24)*a(n-2). - _Vaclav Kotesovec_, Dec 07 2014 %F A251665 a(n) ~ 3 * 5^(5*n-3/2) / 2^(8*n-1) * n^(n-1) / exp(n-1). - _Vaclav Kotesovec_, Dec 07 2014 %e A251665 E.g.f.: A(x) = 1 + 4*x + 47*x^2/2! + 1034*x^3/3! + 34349*x^4/4! + 1540480*x^5/5! +... %e A251665 such that A(x) = exp(5*x*G(x)^4) / G(x) %e A251665 where G(x) = 1 + x*G(x)^5 is the g.f. of A002294: %e A251665 G(x) = 1 + x + 5*x^2 + 35*x^3 + 285*x^4 + 2530*x^5 + 23751*x^6 +... %t A251665 Table[Sum[5^k * n!/k! * Binomial[5*n-k-2,n-k] * (4*k-1)/(4*n-1),{k,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Dec 07 2014 *) %o A251665 (PARI) {a(n)=local(G=1); for(i=0, n, G=1+x*G^5 +x*O(x^n)); n!*polcoeff(exp(5*x*G^4)/G, n)} %o A251665 for(n=0, 20, print1(a(n), ", ")) %o A251665 (PARI) {a(n) = sum(k=0, n, 5^k * n!/k! * binomial(5*n-k-2,n-k) * (4*k-1)/(4*n-1) )} %o A251665 for(n=0, 20, print1(a(n), ", ")) %Y A251665 Cf. A251575, A251695, A002294. %Y A251665 Cf. Variants: A243953, A251663, A251664, A251666, A251667, A251668, A251669, A251670. %K A251665 nonn %O A251665 0,2 %A A251665 _Paul D. Hanna_, Dec 07 2014